Статьи про компьютерные сети и телекоммуникации. Компьютерныесети и телекоммуникации. Виды телекоммуникационных технологий

Обмен информацией при помощи компьютерных сетей называется компьютерной телекоммуникацией (КТ). Она отличается от передачи по почте, телеграфу, с помощью радиосвязи тем, что в процессе передачи осуществляется обработка и создание информации. КТ дает возможность создания информационных систем коллективного пользования, осуществляющих обмен информацией как между несколькими ЭВМ, пользователем и удаленной ЭВМ, так и между пользователями через посредство ЭВМ.

КТ реализуется в локальных вычислительных сетях (ЛВС) на уровне предприятия, организации, на региональном (территориальном) уровне (корпоративные, городские сети и т. п.) и в глобальном масштабе на национальном и международном уровне.

Компьютерные телекоммуникации - это линии непосредственной связи ЭВМ, разнообразные коммуникационные системы и оборудование связи: телефонной, радиосвязи, оптико-волоконной и космической (спутниковой) . КТ дает возможность оперативно обмениваться информацией, включая возможность работы в режиме реального времени.

Связь может быть установлена между двумя автономными ПК и с удаленным абонентом - другим ПК или факсом (модемная связь). Для первого вида связи ПО поддерживает файловый обмен между ПК по кабелю через последовательные порты. Для поддержки модемной связи ПК требуется более сложное ПО, однако возможности такой связи значительно выше - по одной и той же телефонной линии одновременно передается речевая информация и с большой скоростью цифровая (ISDN-технология).

Компьютерные (вычислительные, информационные) сети на основе КТ и ПК массового распространения дают возможность пользователям ПК, подключенным к линиям связи и имеющим необходимые устройства (модем, факс-модем, сетевую карту) и телекоммуникационное ПО, посылать сообщения по электронной почте, участвовать в телеконференциях, производить банковские и торговые операции, получать информацию из банков, баз данных и знаний и т. п.

Первоначально КС имели последовательную, кольцевую (1970-е гг.), звездообразную или магистральную структуру (топологию) связей абонентов. Например, КС ETHERNET фирмы Xerox имела магистральную структуру, имеющую двунаправленную линию связи.

Региональная сеть образуется путем связывания локальных КС в единую сеть той или иной топологии. В свою очередь объединение региональных сетей дает сеть глобальную. Соединение КС осуществляется при помощи специальных устройств, мощных ЭВМ или ПК и сложных технических систем - телефонных сетей, спутниковых и волоконно-оптических и других систем связи. Одинаковые сети связываются при помощи моста - это простейшая связь. Связь сетей на основе шлюза осуществляется при необходимости преобразования адресов получателей и переформатирования данных. Связь КС через ретранслятор реализует накопление данных.

Связь КС с ПК производится через через выделенные и беспроводная линии. Офисы, отели, другие учреждения и частные дома оборудуются ЛВС для подключения к глобальной сети из любой комнаты.

Передача данных в КС производится на основе двух методов - коммутации каналов и коммутации пакетов. Коммутация каналов осуществляется на время сеанса связи (пример - телефонная связь). Линия связи остается занятой все время передачи сообщения. Данные передаются небольшими кадрами с проверкой ошибок в каждом кадре. Существуют КС с коммутацией сообщений, блокирующая не весь путь передачи, как при коммутации каналов, а только часть между ближайшими ретрансляторами.

Коммутация каналов применяется в случае требования высокой надежности, высокой помехозащищенности и конфиденциальности связи (например, между правительственными учреждениями, главами государств, в военной сфере и т. п.).

При коммутации пакетов сообщения разбиваются на пакеты фиксированной длины (128 байтов и др.), снабжаются маркерами с адресами отправителя и получателя и номером пакета, и отправляются по сети как независимые сообщения. Накопленные в буфере узла связи пакеты, принадлежащие различным сообщениям, передаются на соседний узел связи. В пункте назначения интерфейсный процессор объединяет пакеты в единое сообщение и выдает адресату.

Метод коммутации пакетов и передачи их по разным маршрутам повышает надежность и сокращает время передачи сообщений, обеспечивая высшую пропускную способность, в частности, коротких сообщений, что эффективно поддерживает диалоговый режим реального времени, пользующийся популярностью в современном мире.

В начальный период создания КС (1970-е гг.) их различия затрудняли объединение в глобальные сети. Но в результате развития КС сформировался иерархический подход к организации сетей, воплощенный в стандартной модели связи открытых систем (OSI-архитектуре) Международной организации стандартов (МОС).

Раздел “Компьютерные телекоммуникации” ориентирован на базовый уровень, рекомендованный школьной программой, но легко перерастает в один или два элективных курса (“Компьютерные сети”, “Сайтостроение”) при привлечении дополнительного материала и расширении набора практикумов и проектов. Эти расширения содержатся в указанном выше учебнике “Выходим в Интернет”.

Компьютерные сети и телекоммуникации XXI века

Введение

1. Аппаратные средства компьютерных сетей

2. Конфигурация ЛС и организация обмена информацией

2.1 Виды архитектур ЛС

2.2 Компоненты передачи данных по сети

2.3 Методы доступа в компьютерных сетях

3. Локальные сети ученого назначения

4. Телекоммуникации

Список использованной литературы

Введение

Компьютерная сеть - объединение нескольких ЭВМ для совместного решения информационных, вычислительных, учебных и других задач.

Одна из первых возникших при развитии вычислительной техники задач, потребовавшая создания сети хотя бы из двух ЭВМ - обеспечение многократно большей, чем могла дать в то время одна машина, надежности при управлении ответственным процессом в режиме реального времени. Так, при запуске космического аппарата необходимые темпы реакции на внешние события превосходят возможности человека, и выход из строя управляющего компьютера грозит непоправимыми последствиями. В простейшей схеме работу этого компьютера дублирует второй такой же, и при сбое активной машины содержимое ее процессора и ОЗУ очень быстро перебрасывается на вторую, которая подхватывает управление (в реальных системах все, конечно, происходит существенно сложнее).

Сети ЭВМ породили существенно новые технологии обработки информации - сетевые технологии. В простейшем случае сетевые технологии позволяют совместно использовать ресурсы - накопители большой емкости, печатающие устройства, доступ в Internet, базы и банки данных. Наиболее современные и перспективные подходы к сетям связаны с использованием коллективного разделения труда при совместной работе с информацией - разработке различных документов и проектов, управлении учреждением или предприятием и т.д.

Компьютерные сети и сетевые технологии обработки информации стали основой для построения современных информационных систем. Компьютер ныне следует рассматривать не как отдельное устройство обработки, а как "окно" в компьютерные сети, средство коммуникаций с сетевыми ресурсами и другими пользователями сетей.

1. Аппаратные средства компьютерных сетей

Локальные сети (ЛС ЭВМ) объединяют относительно небольшое число компьютеров (обычно от 10 до 100, хотя изредка встречаются и гораздо больше) в пределах одного помещения (учебный компьютерный класс), здания или учреждении (например, университета). Традиционное название - локальная вычислительная сеть (ЛВС) - скорее дань тем временам, когда сети в основном использовались для решения вычислительных задач; сегодня же в 99% случаев речь идет исключительно об обмене информацией в виде текстов, графических и видео-образов, числовых массивов. Полезность ЛС объясняется тем, что от 60% до 90% необходимой учреждению информации циркулирует внутри него, не нуждаясь в выходе наружу.

Большое влияние на развитие ЛС оказало создание автоматизированных систем управления предприятиями (АСУ). АСУ включают несколько автоматизированных рабочих мест (АРМ), измерительных комплексов, пунктов управления. Другое важнейшее поле деятельности, в котором ЛС доказали свою эффективность - создание классов учебной вычислительной техники (КУВТ).

Благодаря относительно небольшим длинам линий связи (как правило, не более 300 метров), по ЛC можно передавать информацию в цифровом виде с высокой скоростью передачи. На больших расстояниях такой способ передачи неприемлем из-за неизбежного затухания высокочастотных сигналов, в этих случаях приходится прибегать к дополнительным техническим (цифро-аналоговым преобразованиям) и программным (протоколам коррекции ошибок и др.) решениям.

Характерная особенность ЛС - наличие связывающего всех абонентов высокоскоростного канала связи для передачи информации в цифровом виде. Существуют проводные и беспроводные каналы. Каждый из них характеризуется определенными значениями существенных с точки зрения организации ЛС параметров:

1. скорости передачи данных;

2. максимальной длины линии;

3. помехозащищенности;

4. механической прочности;

5. удобства и простоты монтажа;

6. стоимости.

В настоящее время обычно применяют четыре типа сетевых кабелей:

1. коаксиальный кабель;

2. незащищенная витая пара;

3. защищенная витая пара;

4. волоконно-оптический кабель.

Первые три типа кабелей передают электрический сигнал по медным проводникам. Волоконно-оптические кабели передают свет по стеклянному волокну.

Большинство сетей допускает несколько вариантов кабельных соединений.

Коаксиальные кабели состоят из двух проводников, окруженных изолирующими слоями. Первый слой изоляции окружает центральный медный провод. Этот слой оплетен снаружи внешним экранирующим проводником. Наиболее распространенными коаксиальными кабелями являются толстый и тонкий кабели "Ethernet". Такая конструкция обеспечивает хорошую помехозащищенность и малое затухание сигнала на расстояниях.

Различают толстый (около 10 мм в диаметре) и тонкий (около 4 мм) коаксиальные кабели. Обладая преимуществами по помехозащищенности, прочности, длине, толстый коаксиальный кабель дороже и сложнее в монтаже (его сложнее протягивать по кабельным каналам), чем тонкий. До последнего времени тонкий коаксиальный кабель представлял собой разумный компромисс между основными параметрами линий связи ЛВС и наиболее часто используется для организации крупных ЛС предприятий и учреждений. Однако более дорогие толстые кабели обеспечивают лучшую передачу данных на большее расстояние и менее чувствительны к электромагнитным помехам.

Витые пары представляют собой два провода, скрученных вместе шестью оборотами на дюйм для обеспечения защиты от электромагнитных помех и согласования электрического сопротивления. Другим наименованием, обычно потребляемым для такого провода, является "IBM тип-3". В США такие кабели прокладываются при постройке зданий для обеспечения телефонной связи. Однако использование телефонного провода, особенно когда он уже размещен в здании, может создать большие проблемы. Во-первых, незащищенные витые пары чувствительны к электромагнитным помехам, например электрическим шумам, создаваемым люминесцентными светильниками и движущимися лифтами. Помехи могут создавать также сигналы, передаваемые по замкнутому контуру в телефонных линиях, проходящих вдоль кабеля локальной сети. Кроме того, витые пары плохого качества могут иметь переменное число витков на дюйм, что искажает расчетное электрическое сопротивление.

Важно также заметить, что телефонные провода не всегда проложены по прямой линии. Кабель, соединяющий два рядом расположенных помещения, может на самом деле обойти половину здания. Недооценка длины кабеля в этом случае может привести к тому, что фактически она превысит максимально допустимую длину.

Защищенные витые пары схожи с незащищенными, за исключением того, что они используют более толстые провода и защищены от внешнего воздействия шеи изолятора. Наиболее распространенный тип такого кабеля, применяемого в локальных сетях, "IBM тип-1" представляет собой защищенный кабель с двумя витыми парами непрерывного провода. В новых зданиях лучшим вариантом может быть кабель "тип-2", так как он включает помимо линии передачи данных четыре незащищенные пары непрерывного провода для передачи телефонных переговоров. Таким образом, "тип-2" позволяет использовать один кабель для передачи как телефонных переговоров, так и данных по локальной сети.

Защита и тщательное соблюдение числа повивов на дюйм делают защищенный кабель с витыми парами надежным альтернативным кабельным соединением Однако эта надежность приводит к увеличению стоимости.

Волоконно-оптические кабели передают данные в виде световых импульсов стеклянным "проводам". Большинство систем локальных сетей в настоящее время поддерживает волоконно-оптическое кабельное соединение. Волоконно-оптический кабель обладает существенными преимуществами по сравнению с любыми вариантами медного кабеля. Волоконно-оптические кабели обеспечивают наивысшую скорость передачи; они более надежны, так как не подвержены потерям информационных пакетов из-за электромагнитных помех. Оптический кабель очень тонок и гибок, что делает его транспортировку более удобной по сравнению с более тяжелым медным кабелем. Однако наиболее важно то, что только оптический кабель имеет достаточную пропускную способность, которая в будущем потребуется для более быстрых сетей.

Пока еще цена волоконно-оптического кабеля значительно выше медного. По сравнению с медным кабелем монтаж оптического кабеля более трудоемок, по сколько концы его должны быть тщательно отполированы и выровнены до обеспечения надежного соединения. Однако ныне происходит переход на оптоволоконные линии, абсолютно неподверженные помехам и находящиеся вне конкуренции по пропускной способности. Стоимость таких линий неуклонно снижается, технологические трудности стыковки оптических волокон успешно преодолеваются.

Беспроводная связь на радиоволнах может использоваться для организации сетей в пределах больших помещений типа ангаров или павильонов, там где использование обычных линий связи затруднено или нецелесообразно. Кроме того, беспроводные линии могут связывать удаленные сегменты локальных сетей на расстояниях 3 - 5 км (с антенной типа волновой канал) и 25 км (с направленной параболической антенной) при условии прямой видимости. Организации беспроводной сети существенно дороже, чем обычной.

Для организации учебных ЛС чаще всего используется витая пара, как самая дешевая, поскольку требования к скорости передачи данных и длине линий не являются критическими.

Для связи компьютеров с помощью линий связи ЛС требуются адаптеры сети (или, как их иногда называют, сетевые платы). Самыми известными являются: адаптеры следующих трех типов:

1. ArcNet; 2. Token Ring; 3. Ethernet.

2. Конфигурация ЛС и организация обмена информацией

2.1 Виды архитектур ЛС

В простейших сетях с небольшим числом компьютеров они могут быть полностью равноправными; сеть в этом случае обеспечивает передачу данных от любого компьютера к любому другому для коллективной работы над информацией. Такая сеть называется одноранговой.

Однако в крупных сетях с большим числом компьютеров оказывается целесообразным выделять один (или несколько) мощных компьютеров для обслуживания потребностей сети (хранение и передачу данных, печать на сетевом принтере). Такие выделенные компьютеры называют серверами; они работают под управлением сетевой операционной системы. В качестве сервера обычно используется высокопроизводительный компьютер с большим ОЗУ и винчестером (или даже несколькими винчестерами) большой емкости. Клавиатура и дисплей для сервера сети не обязательны, поскольку они используются очень редко (для настройки сетевой ОС).

Все остальные компьютеры называются рабочими станциями. Рабочие станции могут не иметь винчестерских дисков или даже дисководов вовсе. Такие рабочие станции называют бездисковыми. Первичная загрузка ОС на бездисковые рабочие станции происходит по локальной сети с использованием специально устанавливаемых на сетевые адаптеры рабочих станций микросхем ОЗУ, хранящих программу начальной загрузки.

ЛС в зависимости от назначения и технических решений могут иметь различные конфигурации (или, как еще говорят, архитектуру, или топологию).

В кольцевой ЛС информация передается по замкнутому каналу. Каждый абонент непосредственно связан с двумя ближайшими соседями, хотя в принципе способен связаться с любым абонентом сети.

В звездообразной (радиальной) ЛС в центре находится центральный управляющий компьютер, последовательно связывающийся с абонентами и связывающий их друг с другом.

В шинной конфигурации компьютеры подключены к общему для них каналу (шине), через который могут обмениваться сообщениями.

В древовидной - существует "главный" компьютер, которому подчинены компьютеры следующего уровня, и т.д.

Кроме того, возможны конфигурации без отчетливого характера связей; пределом является полносвязная конфигурация, когда каждый компьютер в сети непосредственно связан с любым другим компьютером.

В крупных ЛС предприятий и учреждений чаще всего используется шинная (шейная) топология, соответствующая архитектуре многих административных зданий, имеющих длинные коридоры и кабинеты сотрудников вдоль них. Для учебных целей в КУВТ чаще всего используют кольцевые и звездообразные ЛС.

В любой физической конфигурации поддержка доступа от одного компьютера к другому, наличие или отсутствие выделенного компьютера (в составе КУВТ его называют "учительским", а остальные - "ученическими"), выполняется программой – сетевой операционной системой, которая по отношению к ОС отдельных компьютеров является надстройкой. Для современных высокоразвитых ОС персональных компьютеров вполне характерно наличие сетевых возможностей (например, OS/2, WINDOWS 95-98).

2.2 Компоненты передачи данных по сети

Процесс передачи данных по сети определяют шесть компонент:

1. компьютер-источник;

2. блок протокола;

3. передатчик;

4. физическая кабельная сеть;

5. приемник;

6. компьютер-адресат.

Компьютер-источник может быть рабочей станцией, файл-сервером, шлюзом или любым компьютером, подключенным к сети. Блок протокола состоит из набора микросхем и программного драйвера для платы сетевого интерфейса. Блок протокола отвечает за логику передачи по сети. Передатчик посылает электрический сигнал через физическую топологическую схему. Приемник распознает и принимает сигнал, передающийся по сети, и направляет его для преобразования в блок протокола. Цикл передачи данных начинается с компьютера-источника, передающего исходные данные в блок протокола. Блок протокола организует данные в пакет передачи, содержащий соответствующий запрос к обслуживающим устройствам, информацию по обработке запроса (включая, если необходимо, адрес получателя) и исходные данные для передачи. Пакет затем направляется в передатчик для преобразования в сетевой сигнал. Пакет распространяется по сетевому кабелю пока не попадает в приемник, где перекодируется в данные. Здесь управление переходит к блоку протокола, который проверяет данные на сбойность, передает "квитанцию" о приеме пакета источнику, переформировывает пакеты и передает их в компьютер-адресат.

В ходе процесса передачи блок протокола управляет логикой передачи по сети через схему доступа.

Каждая сетевая ОС использует определенную стратегию доступа от одного компьютера к другому. Широко используются маркерные методы доступа (называемые селективной передачей), когда компьютер-абонент получает от центрального компьютера сети так называемый маркер - сигнал на право ведения передачи в течение определенного времени, после чего маркер передается другому абоненту. При конкурентном методе доступа абонент начинает передачу данных, если обнаруживает свободной линию, или откладывает передачу на некоторый промежуток времени, если линия занята другим абонентом. При другом способе - резервировании времени - у каждого абонента есть определенный промежуток, в течение которого линия принадлежит только ему.

Наиболее часто применяются две основные схемы:

Конкурентная (Ethernet);

С маркерным доступом (Token Ring, Arcnet).

Ведутся дебаты о том, какая схема более эффективна - конкурентная или с маркерным доступом. Сети с маркерным доступом обычно более медленные, но они дают более предсказуемыми свойствами, чем конкурентные. По мере роста числа пользователей у сетей с маркерным доступом параметры ухудшаются медленнее, чем у конкурентных сетей. Эффективность сети зависит от величины потока сообщений, который необязательно связан с числом активных рабочих станций. По конкурентной схеме, когда много рабочих станций одновременно пытаются пере-слать данные, возникают наложения. Таким образом, если большая часть обработки данных в сети выполняется локально (например, если рабочие станции заняты, главным образом, локальной подготовкой текстов), эффективность сети остается высокой, даже если к сети подключено много пользователей.

При схеме с маркерным доступом эффективность непосредственно определяем числом активных рабочих станций, а не полным потоком сообщений, передаваемым по сети. Каждый дополнительный пользователь добавляет еще один адрес, по которому будет передан маркер независимо от того, нуждается или нет рабочая станция в пересылке сообщения.

Сеть Ethernet использует для управления передачей данных по сети конкурентную схему. Элементы сети Ethernet могут быть соединены по шинной или звездной топологии с использованием витых пар, коаксиальных или волоконно-оптических кабелей.

Основным преимуществом сетей Ethernet является их быстродействие. Обладая скоростью передачи от 10 до 100 Мбит/с, Ethernet является одной из самых быстрых среди существующих локальных сетей. Однако такое быстродействие, в свою очередь, вызывает определенные проблемы: из-за того, что предельные возможности тонкого медного кабеля лишь незначительно превышают указанную скорость передачи в 10 Мбит/с, даже небольшие электромагнитные помехи могут значительно ухудшить производительность сети.

Как показывает их наименование, сети Token Ring используют для передачи данных схему с маркерным доступом. Сеть Token Ring физически выполнена по схеме "звезда", но ведет себя как кольцевая. Другими словами, пакеты данных передаются с одной рабочей станции на другую последовательно (как в кольцевой сети), но постоянно проходят через центральный компьютер (как в сетях типа "звезда"). Сети Token Ring могут осуществлять передачу как по незащищенным и защищенным витым проводным парам, так и по волоконно-оптическим кабелям.

Сети Token Ring существуют в двух версиях: со скоростью передачи в 4 и в 16 Мбит/с. Однако, хотя отдельные сети работают на скоростях либо 4, либо 16 Мбит/с, возможно соединение через мосты сетей с разными скоростями передачи. Сети Token Ring надежны, обладают высокой скоростью (особенно версия со скоростью передачи 16 Мбит/с) и просты для установки. Однако по сравнению с сетями ARCnet сети Token Ring дороги.

Сеть ARCnet использует схему с маркерным доступом и может работать как в шинной, так и в звездной топологии. Схема "звезда" обычно обеспечивает лучшую производительность, так как при этой топологии возникает меньше конфликта при передаче. ARCnet совместима с коаксиальными кабелями, витыми парами и волоконно-оптическими кабелями.

Системы ARCnet являются сравнительно медленными. Передача осуществляется на скорости лишь 2,5 Мбит/с, что значительно меньше, чем в других типах сетей. Несмотря на малое быстродействие, ARCnet сохраняет свою популярность. Ее маленькая скорость передачи является в своем роде компенсацией за эффективный метод передачи сигналов. ARCnet - сравнительно недорогая и гибкая система, которая легко устанавливается, расширяется и подвергается изменению конфигурации.

Правила организации передачи данных в сети называют протоколом. Определенный протокол поддерживается как аппаратно (адаптерами сети), так и программно (сетевой ОС).

В ЛС данные передаются от одного компьютера к другому блоками, которые называют пакетами данных. Станция, передающая пакет данных, обычно указывает в его заголовке адрес назначения данных и свой собственный адрес. Пакеты могут передаваться между рабочими станциями без подтверждения - это тип связи на уровне датаграмм. Проверка правильности передачи пакетов в этом случае выполняется сетевой ОС, которая может сама посылать пакеты, подтверждающие правильную передачу данных. Важное преимущество датаграмм - возможность посылки пакетов сразу всем станциям в сети.

Например, протокол передачи данных IPX (от слов "Internetwork Packet Exchange", что означает "межсетевой обмен пакетами") используется в сетевом программном обеспечении фирмы "Novell" и является реализацией датаграмм. Другой пример - разработанный фирмой IBM протокол NETBIOS, также получивший большую известность, тоже работает на уровне датаграмм.

Сетевой адрес состоит из нескольких компонентов:

1. номера сети;

2. адреса станции в сети;

3. идентификатора программы на рабочей станции.

Номер сети - это номер сегмента сети (кабельного хозяйства), определяемого системным администратором при установке сетевой ОС.

Адрес станции - это число, являющееся уникальным для каждой рабочей станции. Уникальность адресов при использовании адаптеров Ethernet обеспечивается заводом-изготовителем плат (адрес станции записывается в микросхеме ОЗУ адаптеров).На адаптерах ArcNet адрес станции устанавливается при помощи перемычек или микропереключателей.

Идентификатор программы на рабочей станции называется сокет. Это число, которое используется для адресации пакетов в конкретной программе, работающей на станции под управлением многозадачной операционной системы (типа Windows, OS/2). Каждая программа для того, чтобы посылать или получать данные по сети, должна получить свой, уникальный для данной рабочей станции, идентификатор - сокет.

3. Локальные сети учебного назначения

ЛС КУВТ - совокупность аппаратных и программных средств, ориентированных на использование в учебном процессе. В конце 80-х годов получили широкое распространение КУВТ "Ямаха", КУВТ на базе микро - ЭВМ БК0010, УКНЦ, "Корвет". Им на смену пришли КУВТ на базе компьютеров IBM PC (и им подобных) и "Apple Macintosh". В ряде мест функционируют и гибридные КУВТ с головной машиной IBM PC и ученическими УКНЦ или "Корвет". В состав каждого КУВТ входят:

Рабочее место преподавателя (РМП);

Рабочие места учащихся (РМУ) - обычно 10 - 15;

Аппаратные и программные средства сетеобразования.

В составе РМП обязательно находится компьютер (системный блок, дисплей и клавиатура), достаточно емкое устройство для хранения информации – накопитель и принтер. В указанных выше КУВТ первого поколения обычно роль накопителя выполняли два НГМД и бытовой кассетный магнитофон. Разумеется, такая сеть предоставляет весьма слабые возможности; в современных ЛС КУВТ на головной машине находится винчестер с ёмкостью до 120 Гбайт, CD - RW, другие устройства.

Сетевая ОС, функционирующая на РМП, должна предоставлять следующий минимальный набор пользовательских возможностей:

1. пересылку программ и данных с РМП на каждое из РМУ и обратно;

2. исполнение программ как на РМУ, так и на РМП;

3. вывод программ и данных с РМУ на внешние накопители и принтер РМП;

В ходе этой работы ОС ЛС КУВТ должна быть способной к следующему.

1. Поддержка файловой системы. Это связано с необходимостью обеспечить абонентам - учащимся доступ к файлам, хранящимся на головной машине сети, которая в этом случае исполняет роль файлового сервера. В более "продвинутом" варианте на головной машине может иметься база данных, представляющая интерес для учебного процесса, и ОС должна поддерживать доступ к этой базе.

2. Защита данных и разграничение доступа. Без этого файлы одних учащихся при записи на общий диск сотрут файлы других. Кроме того, в такой системе коллективного пользования могут быть конфиденциальные данные, и система должна предусмотреть вариант их защиты от несанкционированного доступа (например, по паролю).

3. Система контроля и ведения урока. Она включает возможность преподавателю вмешиваться в работу учащихся, просматривать их экраны, вызывать и редактировать их программы, организовывать коллективные демонстрации и т.д.

Высокоразвитые ОС ЛС КУВТ предоставляют немалые возможности. Среди команд преподавателя есть несколько справочных, позволяющих установить в каком режиме функционируют компьютеры учащихся, команды пересылки программ и их автоматического запуска на РМУ, команды вызова файлов - программ и данных - с любого из РМУ на РМП или на диск, отключения любого из РМУ от сети и обратное подключение. Сеть поддерживает локальную электронную почту и обмен короткими текстовыми сообщениями между любыми компьютерами. Очень важен такой показатель как быстродействие сети. Так, скорость передачи по исходной ЛС КУВТ УКНЦ в 5-8 Кбит/с приводит, например, к затрате нескольких минут на рассылку компилятора Паскаля - это слишком много для учебного процесса. Установка в этом классе головной машины IBM PC с сетевой системой фирмы "Линакс" сокращает это время минимум в 10 раз. Однако, даже в классах на основе компьютеров IBM PC и Macintosh скорость рассылки по сети бывает недостаточно высокой, что создает проблемы при учебной работе.

4. Телекоммуникации

Компьютерные телекоммуникации - одна из наиболее динамично развивающихся областей информационных технологий. По сравнению с другими разделами информационных технологий ее технологическая составляющая значительно превосходит теоретическую. Поэтому эффективность изучения данной темы сильно зависит от возможности организовать практическую работу учащихся с компьютерными сетями.

В рамках данного раздела базового курса реализуется следующий перечень педагогических целей: дать представление о назначении и структуре локальных и глобальных сетей; познакомить учащихся с основными информационными услугами сетей, с возможностями Internet; обучить способам обмена файлами в локальной сети компьютерного класса; познакомить со способами поиска информации в Internet (при наличии технических возможностей).

локальные сети;

глобальные сети.

Тема компьютерных сетей обширна по числу понятий и может излагаться с разной степенью подробности. Раскрытие этой темы в школьных учебниках, как правило, носит краткий характер. Поэтому, наряду с обсуждением вопросов методики, в данный подраздел пособия включены дополнительные сведения по теме, которые будут полезны учителю.

Изучаемые вопросы:

♦ Локальная сеть (ЛС), организация и назначение.

♦ Локальные сети школьных КУВТ.

♦ Организация глобальных сетей (ГС).

♦ Информационные услуги ГС.

♦ Аппаратные средства сетей.

♦ Что такое Internet.

♦ Информационные услуги Internet и World Wide Web.

Если компьютеры в школьном кабинете информатики объединены в локальную сеть, то это обстоятельство существенно облегчает изучение данной темы. Именно школьный компьютерный класс должен стать отправной точкой в разговоре о передаче информации в компьютерных сетях. Определив компьютерную сеть как систему компьютеров, связанных каналами передачи информации, учитель демонстрирует такую систему на оборудовании компьютерного класса и сообщает, что такая сеть называется локальной.

Локальные компьютерные сети небольшие по масштабам и работают в пределах одного помещения, здания, предприятия. Возможно, что в школе действует локальная сеть, объединяющая компьютеры, установленные в разных помещениях: в учебных кабинетах, кабинете директора, бухгалтерии и др. Точно так же в локальную сеть часто объединяются различные отделы предприятий, фирм, учреждений.

Локальные сети, в зависимости от назначения и технических решений, могут иметь различные структуры объединения компьютеров. Их еще называют конфигурациями, архитектурой, топологией сети.

Бывают ситуации в ЛС, когда топология не имеет какой-то регулярной структуры. Например, компьютеры могут соединяться по принципу "каждый с каждым".

Использование локальных сетей отвечает двум основным целям:

1) обмену файлами между пользователями сети;

2) использованию общедоступных ресурсов: большого пространства дисковой памяти, принтеров, централизованной базы данных, программного обеспечения и др.

Пользователей общей локальной сети принято называть рабочей группой, а компьютеры, за которыми они работают, - рабочими станциями. Если все компьютеры в сети равноправны, т.е. сеть состоит только из рабочих станций пользователей, то ее называют одноранговой сетью. Одноранговые сети используются для осуществления первой из отмеченных целей: для обмена файлами. У каждого компьютера в такой сети есть свое имя. Члены рабочей группы могут обращаться по этим именам к дисковой памяти ПК своих коллег и копировать файлы на свой компьютер или копировать свои файлы на другие компьютеры. Возможность такого обмена обеспечивается специальной сетевой операционной системой. Средствами сетевой ОС можно защитить информацию от постороннего доступа. Таким образом, локальная сеть избавляет от необходимости использовать дискеты для переноса информации с одного компьютера на другой.

Другой способ организации локальной сети - сеть с выделенным (главным) компьютером. Его называют файл-сервером. Чаще всего в школьных компьютерных классах используется именно такая организация. К файл-серверу имеет доступ учитель, а ученики работают за рабочими станциями. Все рабочие станции соединены с главной машиной (схема соединения "звезда"). Поэтому непосредственный обмен информацией происходит между сервером и каждой рабочей станцией. Конечно, в такой системе ученики тоже могут обмениваться файлами, но "транзитом" через сервер. Обычно сервер - это более мощная машина, чем рабочие станции, с большим жестким диском, с дополнительными внешними устройствами (например, CD-ROM - дисководом, принтером, модемом). При такой организации локальной сети реализуется вторая из отмеченных выше целей: доступ пользователей к общим аппаратным и информационным ресурсам сервера. В частности, программы, хранящиеся на диске сервера, могут загружаться в оперативную память рабочей станции и запускаться на исполнение подобно тому, как это делается с собственного диска ПК. Со своего рабочего места пользователь может создавать и сохранять файлы на жестком диске сервера.

Работой сети управляет сетевая операционная система. Операционная система поддерживает стандарты (протоколы) обмена информацией в сети, устанавливает очередность при обращении различных пользователей к одним и тем же ресурсам и пр. Основное назначение сетевой ОС - дать возможность пользователям работать в локальной сети, не мешая друг другу. Работу одноранговых сетей поддерживает операционная система Windows 95/98. Наиболее распространенные ОС для сетей с выделенным сервером: Novell NetWare, Windows NT.

Глобальные компьютерные сети объединяют между собой ЭВМ, расположенные на больших расстояниях (в масштабах региона, страны, мира). Если локальную сеть ученики могут увидеть своими глазами, то знакомство с глобальными сетями будет носить более описательный характер. Здесь, как и во многих других темах, приходит на помощь метод аналогий. Устройство глобальной сети можно сравнить с устройством системы телефонной связи - телефонной сети. Телефоны абонентов связаны с узлами-коммутаторами. В свою очередь, все городские коммутаторы связаны между собой так, что между любыми двумя телефонами абонентов может быть установлена связь. Вся эта система образует телефонную сеть города. Городские (региональные) сети связаны между собой по междугородним линиям. Выход на телефонные сети других стран происходит по международным линиям связи. Таким образом, весь мир "опутан" телефонными сетями. Два абонента в любой части света, подключенные к этой сети, могут связаться друг с другом.

Рассказав об этом, предложите ученикам представить, что у абонентов вместо телефонных аппаратов установлены персональные компьютеры; вместо коммутаторов - мощные компьютерные узлы, и по такой сети циркулирует самая разнообразная информация: от текстовой до видео и звука. Это и есть современная мировая система глобальных компьютерных сетей.

Первая глобальная компьютерная сеть начала действовать в 1969 г. в США, она называлась ARPANET и объединяла в себе всего 4 удаленных компьютера. Примером современной сети научно-образовательного назначения является BITNET. Она охватывает 35 стран Европы, Азии и Америки, объединяет более 800 университетов, колледжей, научных центров. Крупнейшей российской сетью является RELCOM, созданная в 1990 г. RELCOM входит в европейское объединение сетей EUNET, которая, в свою очередь, является участником гигантского мирового сообщества INTERNET. Такая иерархичность характерна для организации глобальных сетей.

Сеть состоит из узловых хост-компьютеров, ПК абонентов сети, линии связи. Обычно узел сети содержит не один, а множество компьютеров. Функции серверов различных сетевых услуг могут выполнять разные компьютеры.

Хост-компьютеры постоянно находятся во включенном состоянии, постоянно готовы к приему-передаче информации. В таком случае говорят, что они работают в режиме on-line. Компьютеры абонентов выходят на связь с сетью (в режим on-line) лишь на определенное время - сеанс связи. Переслав и получив необходимую информацию, абонент может отключиться от сети и далее работать с полученной информацией автономно - в режиме off-line. Маршрут передачи информации пользователю обычно неизвестен. Он может быть уверен лишь в том, что информация проходит через узел подключения и доходит до пункта назначения. Маршрутизацией передаваемых данных занимаются системные средства сети. В разных сеансах связь с одним и тем же корреспондентом может проходить по разным маршрутам.

Шлюзом называют компьютер, организующий связь данной сети с другими глобальными сетями.

Для того чтобы абонент мог воспользоваться услугами электронной почты, он должен:

Иметь аппаратное подключение своего персонального компьютера к почтовому серверу узла компьютерной сети;

Иметь на этом сервере свой почтовый ящик и пароль для обращения к нему;

Иметь личный электронный адрес;

Иметь на своем компьютере клиент-программу электронной почты (мэйлер).

Наряду с электронной почтой в глобальных сетях существуют и другие виды информационных услуг для пользователей.

Telnet. Эта услуга позволяет пользователю работать в режиме терминала удаленного компьютера, т. е. использовать установленные на нем программы так же, как программы на собственном компьютере.

FTP. Так называется сетевой протокол и программы, которые обслуживают работу с каталогами и файлами удаленной машины. Клиент FTP имеет возможность просматривать каталоги FTP-cepверов, копировать интересующие его файлы.

Archie. Так называются специальные серверы, выполняющие роль поисковых программ в системе FTP-серверов. Они помогают быстро найти нужные вам файлы.

Gopher. Система поиска и извлечения информации из сети с развитыми средствами многоуровневых меню, справочных книг, индексных ссылок и пр.

WAIS. Сетевая информационно-поисковая система, основанная на распределенных базах данных и библиотеках.

Usenet. Система телеконференций. Другое название - группы новостей. Обслуживает подписчиков определенных тематических конференций, рассылая им материалы по электронной почте. ящики абонентов и, обнаружив там исходящую корреспонденцию, организует ее отравление. Аппаратные средства сетей. Хост-компьютеры (серверы). Хост-компьютер имеет собственный уникальный адрес в сети и выполняет роль узловой машины, обслуживающей абонентов. В качестве хост-компьютеров используются разные типы машин: от мощных ПК до мини-ЭВМ и даже мэйнфреймов (больших ЭВМ). Основные требования - высокоскоростной процессор и большой объем дисковой памяти (сотни Гбайт). На хост-компьютерах в сети Internet используется операционная система Unix. Все сервер-программы, обслуживающие приложения, работают под управлением Unix.

Из того о чем уже говорилось выше, следует, что понятие "сервер" носит программно-аппаратный смысл. Например, хост-компьютер, на котором в данный момент работает сервер-программа электронной почты, выполняет роль почтового сервера. Если на этой же машине начинает работать сервер-программа WWW, то она становится Web-сервером. Часто функции серверов различных услуг разделены на узле сети между разными компьютерами.

Линии связи. Основные типы линий связи между компьютерами сети: телефонные линии, электрические кабели, оптоволоконный кабель и беспроводная связь. Главными параметрами линий связи являются пропускная способность (максимальная скорость передачи информации), помехоустойчивость, стоимость. По параметру стоимости самыми дорогими являются оптоволоконные линии, самыми дешевыми - телефонные. Однако с уменьшением цены уменьшается и качество работы линии. В табл. 12.1 даны сравнительные характеристики линий по параметрам скорости и помехоустойчивости.

Таблица 1. Характеристики линий связи

Чаще всего для связи между хост-компьютерами используются выделенные телефонные линии или радиосвязь. Если узлы сети расположены сравнительно недалеко друг от друга (в пределах города), то связь между ними может быть организована по кабельным линиям - электрическим или оптоволоконным. В последнее время в сети Internet активно используется спутниковая радиосвязь.

Обычно абоненты (клиенты) подключаются к узлу своего провайдера через телефонную линию. Все чаще для этих целей начинает применяться беспроводная связь.

С точки зрения пользователя, Интернет - это определенное множество информационных услуг, которые он может получать от сети. В число услуг входят: электронная почта, телеконференции (списки рассылки), архивы файлов, справочники и базы данных, Всемирная паутина - WWW и пр. Интернет - это неограниченные информационные ресурсы. Влияние, которое окажет Интернет на развитие человеческого общества, еще до конца не осознано.

Информационные услуги Интернет. Наряду с перечисленными выше информационными услугами (электронной почтой, телеконференциями и др.), предоставляемыми пользователям глобальных сетей, существуют услуги, появление и развитие которых связано исключительно с развитием мировой сети Интернет. Наиболее заметной среди них является WWW.

WWW- World Wide Web - Всемирная паутина. Это гипертекстовая информационная система в Интернете. В последнее время WWW и ее программное обеспечение становится универсальным средством информационных услуг в Интернет.

Основные понятия, связанные с WWW:

Web-страница - основная информационная единица в WWW, имеющая свой адрес;

Web-сервер - компьютер, хранящий Web-страницы и соответствующее программное обеспечение для работы с ними;

Web-браузер - клиент-программа, позволяющая извлекать и просматривать Web-страницы;

Web-сайт - раздел данных на Web-сервере, принадлежащий какой-то организации или лицу. В этом разделе его владелец размещает свою информацию в виде множества взаимосвязанных Web-страниц. Обычно сайт имеет титул - головную страницу, от которой по гиперссылкам или указателям "вперед-назад" можно двигаться по страницам сайта. Наиболее популярными Web-браузерами являются Internet Explorer и Netscape Navigator. Основная задача браузера - обращение к Web-серверу за искомой страницей и вывод страницы на экран. Простейший способ получения нужной информации из Интернет - указание адреса искомого ресурса. Для хранения и поиска информации в Интернет используется универсальная адресация, которая носит название URL - Uniform Resource Locator. В помощь пользователю в Интернет действует ряд специальных поисковых программ. Еще их называют поисковыми серверами, поисковыми машинами, поисковыми системами. Поисковая система выдает пользователю список адресов документов, в которых встречаются указанные пользователем ключевые слова. Ниже приведены адреса наиболее популярных российских поисковых серверов:

http://mssia.agama.com/Aport/

http://www.rambler.ru/

http://yandex.ru/

http://www.altavista.telia.com/

Кроме WWW, среди относительно новых услуг в Интернет существуют следующие:

IRC. Internet Relay Chat - "болтовня" в реальном времени. Позволяет вести письменный диалог удаленным собеседникам в режиме on-line;

Internet-телефония. Услуга, поддерживающая голосовое общение клиентов сети в режиме on-line.

При наличии возможности выхода в Интернет, практическая работа учащихся может быть организована по таким направлениям:

Подготовка, отправление и прием электронной почты;

Работа с Web-браузером, просмотр Web-страниц;

Обращение в FTP - серверам, извлечение файлов;

Поиск информации в системе WWW с помощью поисковых программ.

Знакомство с каждым новым видом прикладного программного обеспечения, обслуживающим соответствующую информационную услугу (почтовая программа, Web-браузер, поисковая программа) следует проводить по стандартной методической схеме: данные, среда, режимы работы, система команд.

Сети ЭВМ врываются в жизнь людей как в профессиональную деятельность, так и в быт - самым неожиданным и массовым образом. Знания о сетях и навыки работы в них становятся необходимыми множеству людей.

Сети ЭВМ породили существенно новые технологии обработки информации - сетевые технологии. В простейшем случае сетевые технологии позволяют совместно использовать ресурсы - накопители большой емкости, печатающие устройства, доступ в Internet, базы и банки данных. Наиболее современные и перспективные подходы к сетям связаны с использованием коллективного разделения труда при совместной работе с информацией - разработке различных документов и проектов, управлении учреждением или предприятием и т.д. Компьютерные сети и сетевые технологии обработки информации стали основой для построения современных информационных систем. Компьютер ныне следует рассматривать не как отдельное устройство обработки, а как "окно" в компьютерные сети, средство коммуникаций с сетевыми ресурсами и другими пользователями сетей.

Список использованной литературы

1. Могилев А.В., Пак Н.И., Хеннер Е.К. Информатика. – М.: "Академия", 2001. – 586 с.

2. Экономическая информатика / под ред. П.В. Конюховского и Д.Н. Колесова. – СПб: Питер, 2000. – 560 с.

3. Бройдо В.Л. Вычислительные системы, сети и телекоммуникации: Учебник для вузов. 2-е изд. - СПб.: Питер, 2006 - 703 с.

4. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 2-е изд. / В.Г. Олифер, Н.А. Олифер –СПб.: Питер, 2004. – 864 с.

5. Телекоммуникации. Руководство для начинающих. / Мур М., Притск Т., Риггс К., Сауфвик П. - СПб.: БХВ - Петербург, 2005. - 624 с.

6. Страхарчук А.Я., Страхарчук В.П. Інформаційні технології в економіці: Навчальний посібник для студентів вищих навчальних закладів. – К: НМЦ "Укоопосвіта", 1999. – 357 с.

Каждому поколению свойственно разрабатывать новые технические средства, совершенствовать систему учета, обработки, передачи и хранения данных. Первыми телекоммуникационными средствами признан телеграф, телефон, телетайп, радиоприемник. Середина XIX столетия отмечена массовым использованием спутниковой связи, вычислительной техники, компьютерной сети. В результате это положительно отразилось на развитии новых телекоммуникационных технологий.

Современный мир невозможен без телекоммуникационных технологий, которые стирают государственные границы и расстояние между людьми, делают доступной мобильную и видеосвязь и позволяют решать множество задач в сфере управления, образования, коммерции. Каждый человек сталкивается с ними ежедневно, деля телефонные звонки, проверяя почту или покупая товары в интернет-магазинах.

Определение и понятие телекоммуникационных технологий

Общее понятие информационных и коммуникационных технологий включает в себя совокупность методов, процессов и устройств, позволяющих получать, собирать, накапливать, хранить, обрабатывать и передавать информацию, закодированную в цифровом виде или существующую в аналоговом виде.

В более узком смысле под телекоммуникационными технологиями понимается совокупность программных и аппаратных средств, позволяющих устанавливать связь без использования проводов и передавать пакеты информации, включающие также аудио и видеоинформацию.

Виды телекоммуникационных технологий

Телекоммуникационные технологии могут быть рассмотрены как сервисы, предоставляемые провайдерами различного уровня.

По этому принципу можно выделить следующие виды телекоммуникационных технологий:

  • телефонная связь, современная телефонная связь позволяет легко переключаться с аналогового стандарта на цифровой, подключать к интернет городские телефоны и соединять в одну сеть аналоговые и мобильные устройства;

  • радиосвязь, которая сегодня превратилась в сотовую связь, телефон, перемещаясь в пределах сети, оказывается в зоне действия различных передающих устройств;

  • спутниковая связь, которая используется провайдерами для создания систем мобильной связи и для государственных систем связи;

  • интернет - наиболее распространенный вид телекоммуникационных технологий, при которых подключение к сети может осуществляться как проводным, так и беспроводным способом.

Информационно-телекоммуникационные сети и интернет

Телекоммуникационные технологии, используемые в интернете, сейчас переживают этап бурного развития и роста.

Создаются новые сети различных типов, среди которых:

  • локальные сети компаний или учреждений, связь между компьютерами в них осуществляется и проводным и беспроводным способом, количество пользователей этих сетей ограничено. Локальные сети могут быть корпоративными, в некоторых странах создаются и городские локальные сети;

  • глобальные сети (Wide Area Network - WAN) представляют совокупность большого количества узлов-компьютеров, расположенных в разных странах мира и связанных между собой каналами оптово-волоконной связи. К этим сетям, представляющим услуги провайдеров, подключаются локальные сети.

Технические и программные средства телекоммуникационных технологий

Работоспособность интернета основана на использовании сетевых узлов и каналов связи. К узлам относятся как отдельные компьютеры, так и хостинги, предоставляющие IP-адреса и доменные имена.

Каналы связи, в общем, делятся на 4 типа:

  • аналоговые телефонные сети;

  • провода, по которым передается электричество;

  • оптоволоконные каналы связи;

  • беспроводные каналы связи, модемные или спутниковые.

К телекоммуникационным каналам связи относятся, в основном, третий и четвертый типы.

Среди коммуникаций, используемых для организации связи, можно отдельно отметить программы, обеспечивающие работу телекоммуникационного оборудования такого, как:

  • IP-АТС;
  • маршрутизаторы;
  • компьютеры.

Отдельно следует назвать прикладные программы, упрощающие работу с обработкой массивов информации.

Программное обеспечение телекоммуникационных технологий

Для передачи данных с использованием возможностей телекоммуникационных технологий применяется специальное программное обеспечение. Это обеспечение функционирует по определенным протоколам или по механизмам, разработанным с целью упростить и стандартизировать работу всех узлов сети, выстроив ее по единому алгоритму.

Так, для передачи по компьютерным сетям разработан стандарт MIME (ssr-Multipurpose Internet Mail Extensions), переводящий данные в формат понятный почтовому серверу. Общение компьютера пользователя и сервера происходит в виде диалога в режиме Клиент-Сервер, где с каждой стороны его участником является определенная программа.

Отдельные программы используются для работы мессенджеров, которые позволяют обмениваться сообщениями, совершать телефонные звонки с передачей голосовой и видеоинформации. Здесь происходит коммуникация не только компьютер - почтовый сервер, к диалогу подключаются и телефонные станции.

Сетевые телекоммуникационные технологии

Различные сетевые телекоммуникационные технологии позволяют решать такие задачи, как:

  • передачу информации в необходимых форматах;

  • выстраивание коммуникаций;

  • обеспечение взаимодействия различных участников сети.

Среди новых технологий особое место занимают программы, позволяющие работать в режиме нетворкинга, объединение CRM-систем с возможностями социальных сетей и многое другое.

Создание корпоративных сетей как офисных, компьютерных, так и телефонных, также попадает в область сетевых технологий, призванных обеспечить синергию за счет эффективной коммуникации пользователей.

Технологии защиты информации в телекоммуникационных сетях

Большая часть информационных массивов, принадлежащих государственным учреждениям и коммерческим предприятиям, имеет самостоятельную ценность и является добычей для потенциальных похитителей, которыми могут быть и хакеры, и внутренние пользователи.

Для защиты информации от утечек разработаны сложные программные продукты, позволяющие определить проникновение неавторизованного пользователя или вируса-похитителя информации в сеть и блокировать его.

Существуют специальные стандарты защиты информации, но даже они не всегда могут уберечь сети от взлома и хищения данных. Особенно уязвимы компьютеры и мобильные устройства частных пользователей, использующих только антивирусы.

От хищения информации с помощью закладных устройств, перехватывающих электромагнитные излучения, необходимо бороться при помощи технических средств.

Использование телекоммуникационных технологий

Телекоммуникационные технологии сегодня в основном применяются для организации систем связи.

Но сами системы связи имеют прикладное значение, при помощи этих технологий можно достичь существенно более важных целей, среди которых:

  • создание систем дистанционного обучения;

  • обеспечение недорогой голосовой телефонной связи;

  • создание информационных систем предприятий и объединение их в комплекс, позволяющий оптимизировать управление;

  • построение банковских сетей;

  • проведение электронных аукционов и тендеров для обеспечения государственных закупок;

  • осуществление коммуникации удаленных субъектов;

  • для интернет-торговли;

  • осуществление дистанционного управления в государственной и в частной сфере.

Спектр возможностей использования телекоммуникационных технологий расширяется с каждым днем. Сложно сказать, что именно будет предложено завтра в этой области, чтобы сделать связь доступнее, а производственные процессы - проще.

Развитие телекоммуникационных технологий

Появление новой науки - телематики позволило использовать возможность для передачи информационных данных на расстоянии. В основе науки лежит система, объединяющая телекоммуникационные средства и информатику. Данное свойство значительно увеличило территорию участников связи.

Характерная особенность информационных технологий состоит в том, что в рабочем процессе используется единственный продукт - информация. Процесс интеллектуальной обработки способствует сбору, хранению и распространению информационных данных.

Современные информационные телекоммуникационные технологии

Телекоммуникационные технологии предусматривают использование информационных сетей и компьютерной техники.

Общесетевой ресурс представлен аппаратным типом, информационными разработками, программным обеспечением, для них имеют значение следующие требования:

  • компьютерная техника различных сетей соединяется автоматически;

  • каждая единица компьютерной техники является составляющим звеном сети, но также работает в самостоятельном режиме;

  • связь обеспечивается посредством телефонной связи, оптоволоконным соединением и спутниковыми каналами.

Интернет располагает различными сервисами, самыми распространенными считаются: обмен сообщениям в режиме электронной почты, услуги электронной доски объявлений, передача файлов.

Телекоммуникационные технологии в образовании

Наша жизнь протекает в информационном обществе, поэтому с самого детства следует учиться новым телекоммуникационным технологиям.

В образовательной системе их применяют для дистанционного обучения, виртуального общения, самообразования, получения необходимой информации.

Разработанная федеральная целевая программа, направленная на развитие образовательной информационной среды, стала предпосылкой для внедрения ее в сфере образования и науки.

Телекоммуникационные технологии и услуги для банковских сетей

Политика национальных телекоммуникационных компаний, экономическое положение и географическое расположение являются факторами, влияющими на выбор технологии по передаче информации в банковской системе.

Современные банковские коммуникации позволяют проводить межбанковские платежи с электронной подписью, шифрование документа.

Переход телекоммуникационных систем на частные спутниковые каналы позволит модернизировать банковскую систему. В этом случае выгодно применять виртуальные частные сети, которые арендуют сети общего пользования.

Крупные телекоммуникационные компании

Сфера предоставления телекоммуникационных услуг отмечена крупнейшими поставщиками проводной, сотовой связи, интернет провайдинга, кабельного телевидения.

Лидерами отрасли являются компании «МТС», «Ростелеком», «Мегафон», «ТрансТелеКом», «Эр-телеком», «Межрегиональный Транзиттелеком», «Космическая связь».

Сегодня современный рынок телекоммуникации продолжает демонстрировать признаки насыщения, но бизнес-операторы ищут новые ниши для дальнейшего развития.

Одним из основных направлений является предоставление комплексного сервиса на стыке информационных технологий и телекоммуникаций.

Современные телекоммуникационные технологии разных видов демонстрируется на выставке «Связь», проходящей в ЦВК Москвы.

Читайте другие наши статьи:

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ

ИНСТИТУТ

КАФЕДРА АВТОМАТИЗИРОВАННОЙ ОБРАБОТКИ

ЭКОНОМИЧЕСКОЙ ИНФОРМАЦИИ

КУРСОВАЯ РАБОТА

По дисциплине « ИНФОРМАТИКА»

на тему «Компьютерные сети и телекоммуникации»

Выполнила:

Плаксина Наталья Николаевна

Специальность ГМУ

№ зачётной книжки 07МГБ03682

Проверила:

Сазонова Н.С.

Челябинск - 2009

  • ВВЕДЕНИЕ
  • ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
    • 1. КЛАССИФИКАЦИЯ КОМПЬЮТЕРНЫХ СЕТЕЙ
  • 2. ТОПОЛОГИЯ ПОСТРОЕНИЯ ЛВС
  • 3. МЕТОДЫ ДОСТУПА К ПЕРЕДАЮЩЕЙ СРЕДЕ В ЛВС
  • 4. КОРПОРАТИВНАЯ СЕТЬ ИНТЕРНЕТ
  • 5. ПРИНЦИПЫ, ТЕХНОЛОГИИ, ПРОТОКОЛЫ ИНТЕРНЕТ
  • 6. ТЕНДЕНЦИИ РАЗВИТИЯ ИНТЕРНЕТ
  • 7. ОСНОВНЫЕ КОМПОНЕНТЫ WWW, URL, HTML
  • ПРАКТИЧЕСКАЯ ЧАСТЬ
  • ЗАКЛЮЧЕНИЕ
  • СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

За последние годы глобальная сеть Интернет превратилась в явление мирового масштаба. Сеть, которая до недавнего времени использовалась ограниченным кругом ученых, государственных служащих и работников образовательных учреждений в их профессиональной деятельности, стала доступной для больших и малых корпораций и даже для индивидуальных пользователей. компьютерный сеть лвс интернет

Изначально Интернет представляла собой достаточно сложную систему для рядового пользователя. Как только Интернет стал доступен для коммерческих фирм и частных пользователей, началась разработка программного обеспечения для работы с различными полезными сервисами Интернет, такими, как FTP, Gopher, WAIS и Telnet. Специалисты также создали совершенно новый вид услуг, например, World Wide Web - систему, позволяющую интегрировать текст, графику и звук.

В данной работе я рассмотрю структуры Сети, ее инструментов и технологий и применения Интернет. Изучаемый мной вопрос крайне актуален потому, что Интернет сегодня переживает период взрывного роста.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1. КЛАССИФИКАЦИЯ КОМПЬЮТЕРНЫХ СЕТЕЙ

Сети компьютеров имеют множество преимуществ перед совокупностью отдельных систем, в их числе следующие:

· Разделение ресурсов.

· Повышение надежности функционирования системы.

· Распределение загрузки.

· Расширяемость.

Разделение ресурсов.

Пользователи сети могут иметь доступ к определенным ресурсам всех узлов сети. В их числе, например, наборы данных, свободная память на удаленных узлах, вычислительная мощность удаленных процессоров и т.д. Это позволяет экономить значительные средства за счет оптимизации использования ресурсов и их динамического перераспределения в процессе работы.

Повышение надежности функционирования системы.

Поскольку сеть состоит из совокупности отдельных узлов, то в случае сбоя на одном или нескольких узлах другие узлы смогут взять на себя их функции. При этом пользователи могут даже и не заметить этого- перераспределение задач возьмет на себя программное обеспечение сети.

Распределение загрузки.

В сетях с переменным уровнем загруженности имеется возможность перераспределять задачи с одних узлов сети (с повышенной нагрузкой) на другие, где имеются свободные ресурсы. Такое перераспределение может производиться динамически в процессе работы, более того, пользователи могут даже и не знать об особенностях планирования задач в сети. Эти функции может брать на себя программное обеспечение сети.

Расширяемость.

Сеть может быть легко расширена за счет добавления новых узлов. При этом архитектура практически всех сетей позволяет легко адаптировать сетевое программное обеспечение к изменениям конфигурации. Более того, это может производиться автоматически.

Однако с точки зрения безопасности эти достоинства превращаются в уязвимые места, порождая серьезные проблемы.

Особенности работы в сети определяются ее двойственным характером: с одной стороны, сеть следует рассматривать как единую систему, а с другой, - как совокупность независимых систем, каждая из которых выполняет свои функции; имеет своих пользователей. Эта же двойственность проявляется в логическом и физическом восприятии сети: на физическом уровне взаимодействие отдельных узлов осуществляется с помощью сообщений различного вида и формата, которые интерпретируются протоколами. На логическом уровне (т.е. сточки зрения протоколов верхних уровней) сеть представляется как совокупность функций, распределенных по различным узлам, но связанных в единый комплекс.

Сети подразделяются:

1. По топологии сети (классификация по организации физического уровня).

Общая шина.

Все узлы соединены с общей высокоскоростной шиной передачи данных. Они одновременно настроены на прием сообщения, но каждый узел может принять только то сообщение, которое предназначено ему. Адрес идентифицируется контроллером сети, при этом в сети может быть только один узел с заданным адресом. Если два узла одновременно заняты передачей сообщения (столкновение пакетов), то один из них или они оба ее прекращают, ожидают случайный интервал времени, затем возобновляют попытку передачи (метод разрешения конфликтов). Возможен другой случай -- в момент передачи каким-либо узлом сообщения по сети, другие узлы начать передачу не могут (метод предотвращения конфликтов). Такая топология сети является очень удобной: все узлы являются равноправными, логическое расстояние между любыми двумя узлами равно 1, скорость передачи сообщений велика. Впервые организация сети «общая шина» и соответствующие протоколы нижних уровней были разработаны совместно компаниями DIGITAL и Rank Xerox, она получила название Ethernet.

Кольцо.

Сеть построена в виде замкнутого контура однонаправленных каналов между станциями. Каждая станция принимает сообщения по входному каналу, в начале сообщения содержится адресная и управляющая информация. На основании ее станция принимает решение сделать копию сообщения и убрать его из кольца либо передать по выходному каналу на соседний узел. Если в настоящий момент не передается никакого сообщения, станция сама может передать сообщение.

В кольцевых сетях используется несколько различных способов управления:

Гирляндная -- управляющая информация передается по отдельным совокупностям (цепям) компьютеров кольца;

Управляющий маркер -- управляющая информация оформляется в виде определенного битового шаблона, циркулирующего по кольцу; только при получении маркера станция может выдать сообщение в сеть (наиболее известный способ, получивший название token ring);

Сегментная -- по кольцу циркулирует последовательность сегментов. Обнаружив пустой, станция может поместить в него сообщение и передать в сеть;

Вставка регистров -- сообщение загружается в регистр сдвига и передается в сеть когда кольцо свободно.

Звезда.

Сеть состоит из одного узла-концентратора и нескольких соединенных с ним терминальных узлов, непосредственно между собой несвязанных. Один или несколько терминальных узлов могут являться концентраторами другой сети, в этом случае сеть приобретает древовидную топологию.

Управление сетью полностью осуществляется концентратором; терминальные узлы могут связываться между собой только через него. Обычно на терминальных узлах выполняется лишь локальная обработка данных. Обработка данных, имеющих отношение ко всей сети, осуществляется на концентраторе. Она носит название централизованной. Управление сетью обычно осуществляется с помощью процедуры опроса: концентратор через определенные промежутки времени опрашивает по очереди терминальные станции - есть ли для него сообщение. Если есть - терминальная станция передает сообщение на концентратор, если нет - осуществляется опрос следующей станции. Концентратор может передать сообщение одному или нескольким терминальным станциям в любой момент времени.

2. По размерам сети:

· Локальные.

· Территориальные.

Локальные.

Сеть передачи данных, связывающая ряд узлов в одной локальной зоне (комната, организация); обычно узлы сети комплектуются однотипным аппаратным и программным обеспечением (хотя это и необязательно). Локальные сети обеспечивают высокие скорости передачи информации. Локальные сети характеризуются короткими (не более нескольких километров) линиями связи, контролируемой рабочей средой, низкой вероятностью ошибок, упрощенными протоколами. Для связи локальных сетей с территориальными используются шлюзы.

Территориальные.

Отличаются от локальных большей протяженностью линий связи (город, область, страна, группа стран), которые могут обеспечиваться телекоммуникационными компаниями. Территориальная сеть может связывать несколько локальных сетей, отдельные удаленные терминалы и ЭВМ и может быть соединена с другими территориальными сетями.

Территориальные сети редко используют какие-либо типовые топологические конструкции, так как они предназначены для выполнения других, обычно специфических задач. Поэтому они как правило строятся в соответствии с произвольной топологией, управление осуществляется с помощью специфических протоколов.

3. По организации обработки информации (классификация на логическом уровне представления; здесь под системой понимается вся сеть как единый комплекс):

Централизованная.

Системы такой организации наиболее широко распространены и привычны. Они состоят из центрального узла, реализующего весь комплекс выполняемых системой функций, и терминалов, роль которых сводится к частичному вводу и выводу информации. В основном периферийные устройства играют роль терминалов, с которых осуществляется управление процессом обработки информации. Роль терминалов могут выполнять дисплейные станции или персональные компьютеры, как локальные, так и удаленные. Любая обработка (в том числе связь с другими сетями) выполняется через центральный узел. Особенностью таких систем является высокая нагрузка на центральный узел, в силу чего там должен быть высоконадежный и высокопроизводительный компьютер. Центральный узел является наиболее уязвимой частью системы: выход его из строя выводит из строя всю сеть. В тоже время задачи обеспечения безопасности в централизованных системах решаются наиболее просто и фактически сводятся к защите центрального узла.

Другой особенностью таких систем является неэффективное использование ресурсов центрального узла, а также неспособность гибкой перестройки характера работы (центральный компьютер должен работать все время, а значит какую-то его часть он может работать вхолостую). В настоящее время доля систем с централизованным управлением постепенно падает.

Распределенная.

Практически все узлы этой системы могут выполнять сходные функции, причем каждый отдельный узел может использовать оборудование и программное обеспечение других узлов. Основной частью такой системы является распределенная ОС, которая распределяет объекты системы: файлы, процессы (или задачи), сегменты памяти, другие ресурсы. Но при этом ОС может распределять не все ресурсы или задачи, а только часть их, например, файлы и свободную память на диске. В этом случае система все равно считается распределенной, количество ее объектов (функций, которые могут быть распределены по отдельным узлам) называется степенью распределенности. Такие системы могут быть как локальными, так и территориальными. Говоря математическим языком, основной функцией распределенной системы является отображение отдельных задач во множество узлов, на которых происходит их выполнение . Распределенная система должна обладать следующими свойствами:

1. Прозрачностью, то есть система должна обеспечить обработку информации вне зависимости от ее местонахождения.

2. Механизмом распределения ресурсов, который должен выполнять следующие функции: обеспечивать взаимодействие процессов и удаленный вызов задач, поддерживать виртуальные каналы, распределенные транзакции и службу имен.

3. Службой имен, единой для всей системы, включая поддержку единой службы директорий.

4. Реализацией служб гомогенных и гетерогенных сетей.

5. Контролем функционирования параллельных процессов.

6. Безопасностью. В распределенных системах проблема безопасности переходит на качественно новый уровень, поскольку приходится контролировать ресурсы и процессы всей системы в целом, а также передачу информации между элементами системы. Основные составляющие защиты остаются теми же - контроль доступа и информационных потоков, контроль трафика сети, аутентификация, операторский контроль и управление защитой. Однако контроль в этом случае усложняется.

Распределенная система обладает рядом преимуществ, не присущих никакой другой организации обработки информации: оптимальностью использования ресурсов, устойчивостью к отказам (выход из строя одного узла не приводит к фатальным последствиям - его легко можно заменить) и т.д. Однако при этом возникают новые проблемы: методика распределения ресурсов, обеспечение безопасности, прозрачности и др. В настоящее время все возможности распределенных систем реализованы далеко не полностью.

В последнее время все большее признание получает концепция обработки информации клиент-сервер. Данная концепция является переходной от централизованной к распределенной и одновременно объединяющей обе последних. Однако клиент-сервер - это не столько способ организации сети, сколько способ логического представления и обработки информации.

Клиент-сервер - это такая организация обработки информации, при которой все выполняемые функции делятся на два класса: внешние и внутренние. Внешние функции состоят из поддержки интерфейса пользователя и функций представления информации на уровне пользователя. Внутренние касаются выполнения различных запросов, процесса обработки информации, сортировки и др.

Сущность концепции клиент-сервер заключается в том, что в системе выделяются элементы двух уровней: серверы, выполняющие обработку данных (внутренние функции), и рабочие станции, выполняющие функции формирования запросов и отображения результатов их обработки (внешние функции). От рабочих станций к серверу идет поток запросов, в обратном направлении - результаты их обработки. Серверов в системе может быть несколько и они могут выполнять различные наборы функций нижнего уровня (серверы печати, файловые и сетевые серверы). Основной объем информации обрабатывается на серверах, которые в этом случае играют роль локальных центров; информация вводится и выводится с помощью рабочих станций.

Отличительные особенности систем, построенных по принципу клиент-сервер, следующие:

Наиболее оптимальное использование ресурсов;

Частичное распределение процесса обработки информации в сети;

Прозрачный доступ к удаленным ресурсам;

Упрощенное управление;

Пониженный трафик;

Возможность более надежной и простой защиты;

Большая гибкость в использовании системы в целом, а также разнородного оборудования и программного обеспечения;

Централизованный доступ к определенным ресурсам,

Отдельные части одной системы могут строится по различным принципам и объединяться с использованием соответствующих согласующих модулей. Каждый класс сетей имеет свои специфические особенности как в плане организации, так и в плане защиты.

2.ТОПОЛОГИЯ ПОСТРОЕНИЯ ЛВС

Термин "топология сети" относится к пути, по которому данные перемещаются по сети. Существуют три основных вида топологий: "общая шина", "звезда" и "кольцо".

Рисунок 1. Шинная (линейная) топология.

Топология "общая шина" предполагает использование одного кабеля, к которому подключаются все компьютеры сети (рис. 1). В случае "общая шина" кабель используется совместно всеми станциями по очереди. Принимаются специальные меры для того, чтобы при работе с общим кабелем компьютеры не мешали друг другу передавать и принимать данные.

В топологии "общая шина" все сообщения, посылаемые отдельными компьютерами, подключенными к сети. Надежность здесь выше, так как выход из строя отдельных компьютеров не нарушит работоспособности сети в целом. Поиск неисправностей в кабеле затруднен. Кроме того, так как используется только один кабель, в случае обрыва нарушается работа всей сети.

Рисунок 2. Топология типа "звезда".

На рис. 2 показаны компьютеры, соединенные звездой. В этом случае каждый компьютер через специальный сетевой адаптер подключается отдельным кабелем к объединяющему устройству.

При необходимости можно объединять вместе несколько сетей с топологией "звезда", при этом получаются разветвленные конфигурации сети.

С точки зрения надежности эта топология не является

наилучшим решением, так как выход из строя центрального узла приведет к остановке всей сети. Однако при использовании топологии "звезда" легче найти неисправность в кабельной сети.

Используется также топология "кольцо" (рис. 3). В этом случае данные передаются от одного компьютера к другому как бы по эстафете. Если компьютер получит данные, предназначенные для другого компьютера, он передает их дальше по кольцу. Если данные предназначены для получившего их компьютера, они дальше не передаются.

Локальная сеть может использовать одну из перечисленных топологий. Это зависит от количества объединяемых компьютеров, их взаимного расположения и других условий. Можно также объединить несколько локальных сетей, выполненных с использованием разных топологий, в единую локальную сеть. Может, например, древовидная топология.

Рисунок 3. Кольцевая топология.

3. МЕТОДЫ ДОСТУПА К ПЕРЕДАЮЩЕЙ СРЕДЕ В ЛВС

Несомненные преимущества обработки информации в сетях ЭВМ оборачиваются немалыми сложностями при организации их защиты. Отметим следующие основные проблемы:

Разделение совместно используемых ресурсов.

В силу совместного использования большого количества ресурсов различными пользователями сети, возможно находящимися на большом расстоянии друг от друга, сильно повышается риск НСД - в сети его можно осуществить проще и незаметнее.

Расширение зоны контроля.

Администратор или оператор отдельной системы или подсети должен контролировать деятельность пользователей, находящихся вне пределов его досягаемости, возможно, в другой стране. При этом он должен поддерживать рабочий контакт со своими коллегами в других организациях.

Комбинация различных программно-аппаратных средств.

Соединение нескольких систем, пусть даже однородных по характеристикам, в сеть увеличивает уязвимость всей системы в целом. Система настроена на выполнение своих специфических требований безопасности, которые могут оказаться несовместимы с требованиями на других системах. В случае соединения разнородных систем риск повышается.

Неизвестный периметр.

Легкая расширяемость сетей ведет к тому, что определить границы сети подчас бывает сложно; один и тот же узел может быть доступен для пользователей различных сетей. Более того, для многих из них не всегда можно точно определить сколько пользователей имеют доступ к определенному узлу и кто они.

Множество точек атаки.

В сетях один и тот же набор данных или сообщение могут передаваться через несколько промежуточных узлов, каждый из которых является потенциальным источником угрозы. Естественно, это не может способствовать повышению защищенности сети. Кроме того, ко многим современным сетям можно получить доступ с помощью коммутируемых линий связи и модема, что во много раз увеличивает количество возможных точек атаки. Такой способ прост, легко осуществим и трудно контролируем; поэтому он считается одним из наиболее опасных. В списке уязвимых мест сети также фигурируют линии связи и различные виды коммуникационного оборудования: усилители сигнала, ретрансляторы, модемы и т.д.

Сложность управления и контроля доступа к системе.

Многие атаки на сеть могут осуществляться без получения физического доступа к определенному узлу - с помощью сети из удаленных точек. В этом случае идентификация нарушителя может оказаться очень сложной, если не невозможной. Кроме того, время атаки может оказаться слишком мало для принятия адекватных мер.

По своей сути проблемы защиты сетей обусловлены двойственным характером последних: об этом мы говорили выше. С одной стороны, сеть есть единая система с едиными правилами обработки информации, а с другой, - совокупность обособленных систем, каждая из которых имеет свои собственные правила обработки информации. В частности, эта двойственность относится и к проблемам защиты. Атака на сеть может осуществляться с двух уровней (возможна их комбинация):

1. Верхнего - злоумышленник использует свойства сети для проникновения на другой узел и выполнения определенных несанкционированных действий. Предпринимаемые меры защиты определяются потенциальными возможностями злоумышленника и надежностью средств защиты отдельных узлов.

2. Нижнего - злоумышленник использует свойства сетевых протоколов для нарушения конфиденциальности или целостности отдельных сообщений или потока в целом. Нарушение потока сообщений может привести к утечке информации и даже потере контроля за сетью. Используемые протоколы должны обеспечивать защиту сообщений и их потока в целом.

Защита сетей, как и защита отдельных систем, преследует три цели: поддержание конфиденциальности передаваемой и обрабатываемой в сети информации, целостности и доступности ресурсов и компонентов сети.

Эти цели определяют действия по организации защиты от нападений с верхнего уровня. Конкретные задачи, встающие при организации защиты сети, обуславливаются возможностями протоколов высокого уровня: чем шире эти возможности, тем больше задач приходится решать. Действительно, если возможности сети ограничиваются пересылкой наборов данных, то основная проблема защиты заключается в предотвращении НСД к наборам данных, доступным для пересылки. Если же возможности сети позволяют организовать удаленный запуск программ, работу в режиме виртуального терминала, то необходимо реализовывать полный комплекс защитных мер.

Защита сети должна планироваться как единый комплекс мер, охватывающий все особенности обработки информации. В этом смысле организация защиты сети, разработка политики безопасности, ее реализация и управление защитой подчиняются общим правилам, которые были рассмотрены выше. Однако необходимо учитывать, что каждый узел сети должен иметь индивидуальную защиту в зависимости от выполняемых функций и от возможностей сети. При этом защита отдельного узла должна являться частью общей защиты. На каждом отдельном узле необходимо организовать:

Контроль доступа ко всем файлам и другим наборам данных, доступным из локальной сети и других сетей;

Контроль процессов, активизированных с удаленных узлов;

Контроль сетевого графика;

Эффективную идентификацию и аутентификацию пользователей, получающих доступ к данному узлу из сети;

Контроль доступа к ресурсам локального узла, доступным для использования пользователями сети;

Контроль за распространением информации в пределах локальной сети и связанных с нею других сетей.

Однако сеть имеет сложную структуру: для передачи информации с одного узла на другой последняя проходит несколько стадий преобразований. Естественно, все эти преобразования должны вносить свой вклад в защиту передаваемой информации, в противном случае нападения с нижнего уровня могут поставить под угрозу защиту сети. Таким образом, защита сети как единой системы складывается из мер защиты каждого отдельного узла и функций защиты протоколов данной сети.

Необходимость функций защиты протоколов передачи данных опять же обуславливается двойственным характером сети: она представляет собой совокупность обособленных систем, обменивающихся между собой информацией с помощью сообщений. На пути от одной системы к другой эти сообщения преобразуются протоколами всех уровней. А поскольку они являются наиболее уязвимым элементом сети, протоколы должны предусматривать обеспечение их безопасности для поддержки конфиденциальности, целостности и доступности информации, передаваемой в сети.

Сетевое программное обеспечение должно входить в состав сетевого узла, в противном случае возможно нарушение работы сети и ее защиты путем изменения программ или данных. При этом протоколы должны реализовывать требования по обеспечению безопасности передаваемой информации, которые являются частью общей политики безопасности. Ниже приводится классификация угроз, специфических для сетей (угрозы нижнего уровня):

1. Пассивные угрозы (нарушение конфиденциальности данных, циркулирующих в сети) -- просмотр и/или запись данных, передаваемых по линиям связи:

Просмотр сообщения - злоумышленник может просматривать содержание сообщения, передаваемого по сети;

Анализ графика - злоумышленник может просматривать заголовки пакетов, циркулирующих в сети и на основе содержащейся в них служебной информации делать заключения об отправителях и получателях пакета и условиях передачи (время отправления, класс сообщения, категория безопасности и т.д.); кроме того, он может выяснить длину сообщения и объем графика.

2. Активные угрозы (нарушение целостности или доступности ресурсов сети) -- несанкционированное использование устройств, имеющих доступ к сети для изменения отдельных сообщений или потока сообщений:

Отказ служб передачи сообщений - злоумышленник может уничтожать или задерживать отдельные сообщения или весь поток сообщений;

- «маскарад» -- злоумышленник может присвоить своему узлу или ретранслятору чужой идентификатор и получать или отправлять сообщения от чужого имени;

Внедрение сетевых вирусов -- передача по сети тела вируса с его последующей активизацией пользователем удаленного или локального узла;

Модификация потока сообщений -- злоумышленник может выборочно уничтожать, модифицировать, задерживать, переупорядочивать и дублировать сообщения, а также вставлять поддельные сообщения.

Совершенно очевидно, что любые описанные выше манипуляции с отдельными сообщениями и потоком в целом, могут привести к нарушениям работы сети или утечке конфиденциальной информации. Особенно это касается служебных сообщений, несущих информацию о состоянии сети или отдельных узлов, о происходящих на отдельных узлах событиях (удаленном запуске программ, например) -- активные атаки на такие сообщения могут привести к потере контроля за сетью. Поэтому протоколы, формирующие сообщения и ставящие их в поток, должны предпринимать меры для их защиты и неискаженной доставки получателю.

Решаемые протоколами задачи аналогичны задачам, решаемым при защите локальных систем: обеспечение конфиденциальности обрабатываемой и передаваемой в сети информации, целостности и доступности ресурсов (компонентов) сети. Реализация этих функций осуществляется с помощью специальных механизмов. К их числу следует отнести:

Механизмы шифрования, которые обеспечивают конфиденциальность передаваемых данных и/или информации о потоках данных. Используемый в данном механизме алгоритм шифрования может использовать секретный или открытый ключ. В первом случае предполагается наличие механизмов управления и распределения ключей. Различают два способа шифрования: канальное, реализуемое с помощью протокола канального уровня, и оконечное (абонентское), реализуемое с помощью протокола прикладного или, в некоторых случаях, представительного уровня.

В случае канального шифрования защищается вся передаваемая по каналу связи информация, включая служебную. Этот способ имеет следующие особенности:

Вскрытие ключа шифрования для одного канала не приводит к компрометации информации в других каналах;

Вся передаваемая информация, включая служебные сообщения, служебные поля сообщений с данными, надежно защищена;

Вся информация оказывается открытой на промежуточных узлах -ретрансляторах, шлюзах и т.д.;

Пользователь не принимает участия в выполняемых операциях;

Для каждой пары узлов требуется свой ключ;

Алгоритм шифрования должен быть достаточно стоек и обеспечивать скорость шифрования на уровне пропускной способности канала (иначе возникнет задержка сообщений, которая может привести к блокировке системы или существенному снижению ее производительности);

Предыдущая особенность приводит к необходимости реализации алгоритма шифрования аппаратными средствами, что увеличивает расходы на создание и обслуживание системы.

Оконечное (абонентское) шифрование позволяет обеспечивать конфиденциальность данных, передаваемых между двумя прикладными объектами. Другими словами, отправитель зашифровывает данные, получатель - расшифровывает. Такой способ имеет следующие особенности (сравните с канальным шифрованием):

Защищенным оказывается только содержание сообщения; вся служебная информация остается открытой;

Никто кроме отправителя и получателя восстановить информацию не может (если используемый алгоритм шифрования достаточно стоек);

Маршрут передачи несущественен -- в любом канале информация останется защищенной;

Для каждой пары пользователей требуется уникальный ключ;

Пользователь должен знать процедуры шифрования и распределения ключей.

Выбор того или иного способа шифрования или их комбинации зависит от результатов анализа риска. Вопрос стоит следующим образом: что более уязвимо -- непосредственно отдельный канал связи или содержание сообщения, передаваемое по различным каналам. Канальное шифрование быстрее (применяются другие, более быстрые, алгоритмы), прозрачно для пользователя, требует меньше ключей. Оконечное шифрование более гибко, может использоваться выборочно, однако требует участия пользователя. В каждом конкретном случае вопрос должен решаться индивидуально.

Механизмы цифровой подписи, которые включают процедуры закрытия блоков данных и проверки закрытого блока данных. Первый процесс использует секретную ключевую информацию, второй -- открытую, не позволяющую восстановить секретные данные. С помощью секретной информации отправитель формирует служебный блок данных (например, на основе односторонней функции), получатель на основе общедоступной информации проверяет принятый блок и определяет подлинность отправителя. Сформировать подлинный блок может только пользователь, имеющий соответствующий ключ.

Механизмы контроля доступа.

Осуществляют проверку полномочий сетевого объекта на доступ к ресурсам. Проверка полномочий производится в соответствии с правилами разработанной политики безопасности (избирательной, полномочной или любой другой) и реализующих ее механизмов.

Механизмы обеспечения целостности передаваемых данных.

Эти механизмы обеспечивают как целостность отдельного блока или поля данных, так и потока данных. Целостность блока данных обеспечивается передающим и принимающим объектами. Передающий объект добавляет к блоку данных признак, значение которого является функцией от самих данных. Принимающий объект также вычисляет эту функцию и сравнивает ее с полученной. В случае несовпадения выносится решение о нарушении целостности. Обнаружение изменений может повлечь за собой действия по восстановлению данных. В случае умышленного нарушения целостности может быть соответствующим образом изменено и значение контрольного признака (если алгоритм его формирования известен), в этом случае получатель не сможет установить нарушение целостности. Тогда необходимо использовать алгоритм формирования контрольного признака как функцию данных и секретного ключа. В этом случае правильное изменение контрольного признака без знания ключа будет невозможно и получатель сможет установить, подвергались ли данные модификации.

Защита целостности потоков данных (от переупорядочивания, добавления, повторов или удаления сообщений) осуществляется с использованием дополнительных формы нумерации (контроль номеров сообщений в потоке), меток времени и т.д.

Желательными компонентами защиты сети являются следующие механизмы:

Механизмы аутентификации объектов сети.

Для обеспечения аутентификации используются пароли, проверка характеристик объекта, криптографические методы (аналогичные цифровой подписи). Эти механизмы обычно применяются для аутентификации одноуровневых сетевых объектов. Используемые методы могут совмещаться с процедурой «троекратного рукопожатия» (троекратный обмен сообщениями между отправителем и получателем с параметрами аутентификации и подтверждениями).

Механизмы заполнения текста.

Используются для обеспечения защиты от анализа графика. В качестве такого механизма может использоваться, например, генерация фиктивных сообщений; в этом случае трафик имеет постоянную интенсивность во времени.

Механизмы управления маршрутом.

Маршруты могут выбираться динамически или быть заранее заданы с тем, чтобы использовать физически безопасные подсети, ретрансляторы, каналы. Оконечные системы при установлении попыток навязывания могут потребовать установления соединения по другому маршруту. Кроме того, может использоваться выборочная маршрутизация (то есть часть маршрута задается отправителем явно - в обход опасных участков).

Механизмы освидетельствования.

Характеристики данных, передаваемые между двумя и более объектами (целостность, источник, время, получатель) могут подтверждаться с помощью механизма освидетельствования. Подтверждение обеспечивается третьей стороной (арбитром), которой доверяют все заинтересованные стороны и которая обладает необходимой информацией.

Помимо перечисленных выше механизмов защиты, реализуемых протоколами различных уровней, существует еще два, не относящихся к определенному уровню. Они по своему назначению аналогичны механизмам контроля в локальных системах:

Обнаружение и обработка событий (аналог средств контроля опасных событий).

Предназначены для обнаружения событий, которые приводят или могут привести к нарушению политики безопасности сети. Список этих событий соответствует списку для отдельных систем. Кроме того, в него могут быть включены события, свидетельствующие о нарушениях в работе перечисленных выше механизмов защиты. Предпринимаемые в этой ситуации действия могут включать различные процедуры восстановления, регистрацию событий, одностороннее разъединение, местный или периферийный отчет о событии (запись в журнал) и т.д.

Отчет о проверке безопасности (аналог проверки с использованием системного журнала).

Проверка безопасности представляет собой независимую проверку системных записей и деятельности на соответствие заданной политике безопасности.

Функции защиты протоколов каждого уровня определяются их назначением:

1. Физический уровень - контроль электромагнитных излучений линий связи и устройств, поддержка коммуникационного оборудования в рабочем состоянии. Защита на данном уровне обеспечивается с помощью экранирующих устройств, генераторов помех, средств физической защиты передающей среды.

2. Канальный уровень - увеличение надежности защиты (при необходимости) с помощью шифрования передаваемых по каналу данных. В этом случае шифруются все передаваемые данные, включая служебную информации.

3. Сетевой уровень - наиболее уязвимый уровень с точки зрения защиты. На нем формируется вся маршрутизирующая информация, отправитель и получатель фигурируют явно, осуществляется управление потоком. Кроме того, протоколами сетевого уровня пакеты обрабатываются на всех маршрутизаторах, шлюзах и др. промежуточных узлах. Почти все специфические сетевые нарушения осуществляются с использованием протоколов данного уровня (чтение, модификация, уничтожение, дублирование, переориентация отдельных сообщений или потока в целом, маскировка под другой узел и др.).

Защита от всех подобных угроз осуществляется протоколами сетевого и транспортного уровней и с помощью средств криптозащиты. На данном уровне может быть реализована, например, выборочная маршрутизация.

4. Транспортный уровень - осуществляет контроль за функциями сетевого уровня на приемном и передающем узлах (на промежуточных узлах протокол транспортного уровня не функционирует). Механизмы транспортного уровня проверяют целостность отдельных пакетов данных, последовательности пакетов, пройденный маршрут, время отправления и доставки, идентификацию и аутентификацию отправителя и получателя и др. функции. Все активные угрозы становятся видимыми на данном уровне.

Гарантом целостности передаваемых данных является криптозащита данных и служебной информации. Никто кроме имеющих секретный ключ получателя и/или отправителя не может прочитать или изменить информацию таким образом, чтобы изменение осталось незамеченным.

Анализ графика предотвращается передачей сообщений, не содержащих информацию, которые, однако, выглядят как настоящие. Регулируя интенсивность этих сообщений в зависимости от объема передаваемой информации можно постоянно добиваться равномерного графика. Однако все эти меры не могут предотвратить угрозу уничтожения, переориентации или задержки сообщения. Единственной защитой от таких нарушений может быть параллельная доставка дубликатов сообщения по другим путям.

5. Протоколы верхних уровней обеспечивают контроль взаимодействия принятой или переданной информации с локальной системой. Протоколы сеансового и представительного уровня функций защиты не выполняют. В функции защиты протокола прикладного уровня входит управление доступом к определенным наборам данных, идентификация и аутентификация определенных пользователей, а также другие функции, определяемые конкретным протоколом. Более сложными эти функции являются в случае реализации полномочной политики безопасности в сети.

4. КОРПОРАТИВНАЯ СЕТЬ ИНТЕРНЕТ

Корпоративная сеть представляет собой частный случай корпоративной сети крупной компании. Очевидно, что специфика деятельности предъявляет жесткие требования к системам защиты информации в компьютерных сетях. Не менее важную роль при построении корпоративной сети играет необходимость обеспечения безотказной и бесперебойной работы, поскольку даже кратковременный сбой в ее работе может привести к гигантским убыткам. И, наконец, требуется обеспечить быструю и надежную передачу большого объема данных, поскольку многие прикладные программы должны работать в режиме реального времени.

Требования к корпоративной сети

Можно выделить следующие основные требования к корпоративной сети:

Сеть объединяет в структурированную и управляемую замкнутую систему все принадлежащие компании информационные устройства: отдельные компьютеры и локальные вычислительные сети (LAN), хост-серверы, рабочие станции, телефоны, факсы, офисные АТС.

В сети обеспечивается надежность ее функционирования и мощные системы защиты информации. То есть, гарантируется безотказная работа системы как при ошибках персонала, так и в случае попытки несанкционированного доступа.

Существует отлаженная система связи между отделениями разного уровня (как с городскими, так и с иногородними отделениями).

В связи с современными тенденциями развития появляется потребность в специфичных решениях. Существенную роль приобретает организация оперативного, надежного и безопасного доступа удаленного клиента к современным услугам.

5. ПРИНЦИПЫ, ТЕХНОЛОГИИ, ПРОТОКОЛЫ ИНТЕРНЕТ

Основное, что отличает Internet от других сетей - это ее протоколы - TCP/IP. Вообще, термин TCP/IP обычно означает все, что связано с протоколами взаимодействия между компьютерами в Internet. Он охватывает целое семейство протоколов, прикладные программы, и даже саму сеть. TCP/IP - это технология межсетевого взаимодействия, технология internet. Сеть, которая использует технологию internet, называется "internet". Если речь идет о глобальной сети, объединяющей множество сетей с технологией internet, то ее называют Internet.

Свое название протокол TCP/IP получил от двух коммуникационных протоколов (или протоколов связи). Это Transmission Control Protocol (TCP) и Internet Protocol (IP). Несмотря на то, что в сети Internet используется большое число других протоколов, сеть Internet часто называют TCP/IP-сетью, так как эти два протокола, безусловно, являются важнейшими.

Как и во всякой другой сети в Internet существует 7 уровней взаимодействия между компьютерами: физический, логический, сетевой, транспортный, уровень сеансов связи, представительский и прикладной уровень. Соответственно каждому уровню взаимодействия соответствует набор протоколов (т.е. правил взаимодействия).

Протоколы физического уровня определяют вид и характеристики линий связи между компьютерами. В Internet используются практически все известные в настоящее время способы связи от простого провода (витая пара) до волоконно-оптических линий связи (ВОЛС).

Для каждого типа линий связи разработан соответствующий протокол логического уровня, занимающийся управлением передачей информации по каналу. К протоколам логического уровня для телефонных линий относятся протоколы SLIP (Serial Line Interface Protocol) и PPP (Point to Point Protocol). Для связи по кабелю локальной сети - это пакетные драйверы плат ЛВС.

Протоколы сетевого уровня отвечают за передачу данных между устройствами в разных сетях, то есть занимаются маршрутизацией пакетов в сети. К протоколам сетевого уровня принадлежат IP (Internet Protocol) и ARP (Address Resolution Protocol).

Протоколы транспортного уровня управляют передачей данных из одной программы в другую. К протоколам транспортного уровня принадлежат TCP (Transmission Control Protocol) и UDP (User Datagram Protocol).

Протоколы уровня сеансов связи отвечают за установку, поддержание и уничтожение соответствующих каналов. В Internet этим занимаются уже упомянутые TCP и UDP протоколы, а также протокол UUCP (Unix to Unix Copy Protocol).

Протоколы представительского уровня занимаются обслуживанием прикладных программ. К программам представительского уровня принадлежат программы, запускаемые, к примеру, на Unix-сервере, для предоставления различных услуг абонентам. К таким программам относятся: telnet-сервер, FTP-сервер, Gopher-сервер, NFS-сервер, NNTP (Net News Transfer Protocol), SMTP (Simple Mail Transfer Protocol), POP2 и POP3 (Post Office Protocol) и т.д.

К протоколам прикладного уровня относятся сетевые услуги и программы их предоставления.

6. ТЕНДЕНЦИИ РАЗВИТИЯ ИНТЕРНЕТ

В 1961 году DARPA (Defence Advanced Research Agensy) по заданию министерства обороны США приступило к проекту по созданию экспериментальной сети передачи пакетов. Эта сеть, названная ARPANET, предназначалась первоначально для изучения методов обеспечения надежной связи между компьютерами различных типов. Многие методы передачи данных через модемы были разработаны в ARPANET. Тогда же были разработаны и протоколы передачи данных в сети - TCP/IP. TCP/IP - это множество коммуникационных протоколов, которые определяют, как компьютеры различных типов могут общаться между собой.

Эксперимент с ARPANET был настолько успешен, что многие организации захотели войти в нее, с целью использования для ежедневной передачи данных. И в 1975 году ARPANET превратилась из экспериментальной сети в рабочую сеть. Ответственность за администрирование сети взяло на себя DCA (Defence Communication Agency), в настоящее время называемое DISA (Defence Information Systems Agency). Но развитие ARPANET на этом не остановилось; протоколы TCP/IP продолжали развиваться и совершенствоваться.

В 1983 году вышел первый стандарт для протоколов TCP/IP, вошедший в Military Standarts (MIL STD), т.е. в военные стандарты, и все, кто работал в сети, обязаны были перейти к этим новым протоколам. Для облегчения этого перехода DARPA обратилась с предложением к руководителям фирмы внедрить протоколы TCP/IP в Berkeley(BSD) UNIX. С этого и начался союз UNIX и TCP/IP.

Спустя некоторое время TCP/IP был адаптирован в обычный, то есть в общедоступный стандарт, и термин Internet вошел во всеобщее употребление. В 1983 году из ARPANET выделилась MILNET, которая стала относиться к министерству обороны США. Термин Internet стал использоваться для обозначения единой сети: MILNET плюс ARPANET. И хотя в 1991 году ARPANET прекратила свое существование, сеть Internet существует, ее размеры намного превышают первоначальные, так как она объединила множество сетей во всем мире. Рисунок 4 иллюстрирует рост числа хостов, подключенных к сети Internet с 4 компьютеров в 1969 году до 8,3 миллионов в 1996. Хостом в сети Internet называются компьютеры, работающие в многозадачной операционной системе (Unix, VMS), поддерживающие протоколы TCP\IP и предоставляющие пользователям какие-либо сетевые услуги.

7. ОСНОВНЫЕ КОМПОНЕНТЫ WWW, URL, HTML

World Wide Web переводится на русский язык как “Всемирная Паутина”. И, в сущности, это действительно так. WWW является одним из самых совершенных инструментов для работы в глобальной мировой сети Internet. Эта служба появилась сравнительно недавно и все еще продолжает бурно развиваться.

Наибольшее количество разработок имеют отношение к родине WWW - CERN, European Particle Physics Laboratory; но было бы ошибкой считать, что Web является инструментом, разработанным физиками и для физиков. Плодотворность и привлекательность идей, положенных в основу проекта, превратили WWW в систему мирового масштаба, предоставляющую информацию едва ли не во всех областях человеческой деятельности и охватывающую примерно 30 млн. пользователей в 83 странах мира.

Главное отличие WWW от остальных инструментов для работы с Internet заключается в том, что WWW позволяет работать практически со всеми доступными сейчас на компьютере видами документов: это могут быть текстовые файлы, иллюстрации, звуковые и видео ролики, и т.д.

Что такое WWW? Это попытка организовать всю информацию в Internet, плюс любую локальную информацию по вашему выбору, как набор гипертекстовых документов. Вы перемещаетесь по сети, переходя от одного документа к другому по ссылкам. Все эти документы написаны на специально разработанном для этого языке, который называется HyperText Markup Language (HTML). Он чем-то напоминает язык, использующийся для написания текстовых документов, только HTML проще. Причем, можно использовать не только информацию, предоставляемую Internet, но и создавать собственные документы. В последнем случае существует ряд практических рекомендаций к их написанию.

Вся польза гипертекста состоит в создании гипертекстовых документов, если вас заинтересовал какой либо пункт в таком документе, то вам достаточно ткнуть туда курсором для получения нужной информации. Также в одном документе возможно делать ссылки на другие, написанные другими авторами или даже расположенные на другом сервере. В то время как вам это представляется как одно целое.

Гипермедиа это надмножество гипертекста. В гипермедиа производятся операции не только над текстом но и над звуком, изображениями, анимацией.

Существуют WWW-серверы для Unix, Macintosh, MS Windows и VMS, большинство из них распространяются свободно. Установив WWW-сервер, вы можете решить две задачи:

1. Предоставить информацию внешним потребителям - сведения о вашей фирме, каталоги продуктов и услуг, техническую или научную информацию.

2. Предоставить своим сотрудникам удобный доступ к внутренним информационным ресурсам организации. Это могут быть последние распоряжения руководства, внутренний телефонный справочник, ответы на часто задаваемые вопросы для пользователей прикладных систем, техническая документация и все, что подскажет фантазия администратора и пользователей. Информация, которую вы хотите предоставить пользователям WWW, оформляется в виде файлов на языке HTML. HTML - простой язык разметки, который позволяет помечать фрагменты текста и задавать ссылки на другие документы, выделять заголовки нескольких уровней, разбивать текст на абзацы, центрировать их и т. п., превращая простой текст в отформатированный гипермедийный документ. Достаточно легко создать html-файл вручную, однако, имеются специализированные редакторы и преобразователи файлов из других форматов.

Основные компоненты технологии World Wide Web

К 1989 году гипертекст представлял новую, многообещающую технологию, которая имела относительно большое число реализаций с одной стороны, а с другой стороны делались попытки построить формальные модели гипертекстовых систем, которые носили скорее описательный характер и были навеяны успехом реляционного подхода описания данных. Идея Т. Бернерс-Ли заключалась в том, чтобы применить гипертекстовую модель к информационным ресурсам, распределенным в сети, и сделать это максимально простым способом. Он заложил три краеугольных камня системы из четырех существующих ныне, разработав:

язык гипертекстовой разметки документов HTML (HyperText Markup Lan-guage);

* универсальный способ адресации ресурсов в сети URL (Universal Resource Locator);

* протокол обмена гипертекстовой информацией HTTP (HyperText Transfer Protocol).

* универсальный интерфейс шлюзов CGI (Common Gateway Interface).

Идея HTML--пример чрезвычайно удачного решения проблемы построения гипертекстовой системы при помощи специального средства управления отображением. На разработку языка гипертекстовой разметки существенное влияние оказали два фактора: исследования в области интерфейсов гипертекстовых систем и желание обеспечить простой и быстрый способ создания гипертекстовой базы данных, распределенной на сети.

В 1989 году активно обсуждалась проблема интерфейса гипертекстовых систем, т.е. способов отображения гипертекстовой информации и навигации в гипертекстовой сети. Значение гипертекстовой технологии сравнивали со значением книгопечатания. Утверждалось, что лист бумаги и компьютерные средства отображения/воспроизведения серьезно отличаются друг от друга, и поэтому форма представления информации тоже должна отличаться. Наиболее эффективной формой организации гипертекста были признаны контекстные гипертекстовые ссылки, а кроме того было признано деление на ссылки, ассоциированные со всем документом в целом и отдельными его частями.

Самым простым способом создания любого документа является его набивка в текстовом редакторе. Опыт создания хорошо размеченных для последующего отображения документов в CERN_е был - трудно найти физика, который не пользовался бы системой TeX или LaTeX. Кроме того к тому времени существовал стандарт языка разметки--Standard Generalised Markup Language (SGML).

Следует также принять во внимание, что согласно своим предложениям Бернерс-Ли предполагал объединить в единую систему имеющиеся информационные ресурсы CERN, и первыми демонстрационными системами должны были стать системы для NeXT и VAX/VMS.

Обычно гипертекстовые системы имеют специальные программные средства построения гипертекстовых связей. Сами гипертекстовые ссылки хранятся в специальных форматах или даже составляют специальные файлы. Такой подход хорош для локальной системы, но не для распределенной на множестве различных компьютерных платформ. В HTML гипертекстовые ссылки встроены в тело документа и хранятся как его часть. Часто в системах применяют специальные форматы хранения данных для повышения эффективности доступа. В WWW документы--это обычные ASCII- файлы, которые можно подготовить в любом текстовом редакторе. Таким образом, проблема создания гипертекстовой базы данных была решена чрезвычайно просто.

...

Подобные документы

    Компьютерные сети и их классификация. Аппаратные средства компьютерных сетей и топологии локальных сетей. Технологии и протоколы вычислительных сетей. Адресация компьютеров в сети и основные сетевые протоколы. Достоинства использования сетевых технологий.

    курсовая работа , добавлен 22.04.2012

    Назначение и классификация компьютерных сетей. Обобщенная структура компьютерной сети и характеристика процесса передачи данных. Управление взаимодействием устройств в сети. Типовые топологии и методы доступа локальных сетей. Работа в локальной сети.

    реферат , добавлен 03.02.2009

    Топологии и концепции построения компьютерных сетей. Услуги, предоставляемые сетью Интернет. Преподавание курса "Компьютерные сети" Вятского государственного политехнического университета. Методические рекомендации по созданию курса "Сетевые технологии".

    дипломная работа , добавлен 19.08.2011

    Классификация компьютерных сетей. Назначение компьютерной сети. Основные виды вычислительных сетей. Локальная и глобальная вычислительные сети. Способы построения сетей. Одноранговые сети. Проводные и беспроводные каналы. Протоколы передачи данных.

    курсовая работа , добавлен 18.10.2008

    Достоинства компьютерных сетей. Основы построения и функционирования компьютерных сетей. Подбор сетевого оборудования. Уровни модели OSI. Базовые сетевые технологии. Осуществление интерактивной связи. Протоколы сеансового уровня. Среда передачи данных.

    курсовая работа , добавлен 20.11.2012

    Классификация и характеристика сетей доступа. Технология сетей коллективного доступа. Выбор технологии широкополосного доступа. Факторы, влияющие на параметры качества ADSL. Способы конфигурации абонентского доступа. Основные компоненты DSL соединения.

    дипломная работа , добавлен 26.09.2014

    Управление доступом к передающей среде. Процедуры обмена данными между рабочими станциями абонентских систем сети, реализация методов доступа к передающей среде. Оценка максимального времени реакции на запрос абонента сети при различных методах доступа.

    курсовая работа , добавлен 13.09.2010

    Топологии компьютерных сетей. Методы доступа к каналам связи. Среды передачи данных. Структурная модель и уровни OSI. Протоколы IP и TCP, принципы маршрутизации пакетов. Характеристика системы DNS. Создание и расчет компьютерной сети для предприятия.

    курсовая работа , добавлен 15.10.2010

    Роль компьютерных сетей, принципы их построения. Системы построения сети Token Ring. Протоколы передачи информации, используемые топологии. Способы передачи данных, средства связи в сети. Программное обеспечение, технология развертывания и монтажа.

    курсовая работа , добавлен 11.10.2013

    Сущность и классификация компьютерных сетей по различным признакам. Топология сети - схема соединения компьютеров в локальные сети. Региональные и корпоративные компьютерные сети. Сети Интернет, понятие WWW и унифицированный указатель ресурса URL.

ВВЕДЕНИЕ

Компьютерная сеть - объединение нескольких ЭВМ для совместного решения информационных, вычислительных, учебных и других задач.

Одна из первых возникших при развитии вычислительной техники задач, потребовавшая создания сети хотя бы из двух ЭВМ - обеспечение многократно большей, чем могла дать в то время одна машина, надежности при управлении ответственным процессом в режиме реального времени. Так, при запуске космического аппарата необходимые темпы реакции на внешние события превосходят возможности человека, и выход из строя управляющего компьютера грозит непоправимыми последствиями. В простейшей схеме работу этого компьютера дублирует второй такой же, и при сбое активной машины содержимое ее процессора и ОЗУ очень быстро перебрасывается на вторую, которая подхватывает управление (в реальных системах все, конечно, происходит существенно сложнее).

Вот примеры других, очень разнородных, ситуации, в которых объединение нескольких ЭВМ необходимо.

А. В простейшем, самом дешевом учебном компьютерном классе, лишь однаизЭВМ - рабочее место преподавателя - имеет дисковод, позволяющий сохранять на диске программы и данные всего класса, и принтер, с помощью которого можно распечатывать тексты. Для обмена информацией между рабочим местом преподавателя и рабочими местами учеников нужна сеть.

Б. Для продажи железнодорожных или авиационных билетов, в которой одновременно участвуют сотни кассиров по всей стране, нужна сеть, связывающая сотни ЭВМ и выносных терминалов на пунктах продажи билетов.

В. Сегодня существует множество компьютерных баз и банков данных по самым разным аспектам человеческой деятельности. Для доступак хранимой в них информации нужна компьютерная сеть.

Сети ЭВМ врываются в жизнь людей - как в профессиональную деятельность, так и в быт - самым неожиданным и массовым образом. Знания о сетях и навыки работы в них становятся необходимыми множеству людей.

Сети ЭВМ породили существенно новые технологии обработки информации -сетевые технологии. В простейшем случае сетевые технологии позволяют совместно использовать ресурсы - накопители большой емкости, печатающие устройства, доступ в Internet, базы и банки данных. Наиболее современные и перспективные подходы к сетям связаны с использованием коллективного разделения труда при совместной работе с информацией - разработке различных документов и проектов, управлении учреждением или предприятием и т.д.

Простейшим видом сети является, так называемая, одноранговая сеть, обеспечивающая связь персональных компьютеров конечных пользователей и позволяющая совместно использовать дисководы, принтеры, файлы.

Более развитые сети помимо компьютеров конечных пользователей -рабочихстанций - включают специальные выделенные компьютеры - серверы. Сервер - это ЭВМ. выполняющая в сети особые функции обслуживания остальных компьютеров сети - рабочих станций. Есть разные виды серверов: файловые, телекоммуникационные серверы, серверы для проведения математических расчетов, серверы баз данных.

Весьма популярная сегодня и чрезвычайно перспективная технология обработки информации в сети называется «клиент - сервер». В методологии «клиент - сервер» предполагается глубокое разделение функций компьютеров в сети. При этом в функции «клиента» (под котором понимается ЭВМ с соответствующим программным обеспечением) входит

Предоставление пользовательского интерфейса, ориентированного на определенные производственные обязанности и полномочия пользователя;

Формирование запросов к серверу, причем не обязательно информируя об этом пользователя; в идеале пользователь вообще не вникает в технологию общения ЭВМ, за которой он работает, с сервером;

Анализ ответов сервера на запросы и предъявление их пользователю. Основная функция сервера - выполнение специфических действий по запросам клиента (например, решение сложной математической задачи, поиск данных в базе, соединение клиента с другим клиентом и т.д.); при этом сам сервер не инициирует никаких взаимодействий с клиентом. Если сервер, к которому обратился клиент, не в состоянии решить задачу из-за нехватки ресурсов, то в идеале он сам находит другой, более мощный, сервер и передает задачу ему, становясь, в свою очередь, клиентом, но не информируя об этом без нужды начального клиента. Обратим внимание, что «клиент» вовсе не есть выносной терминал сервера. Клиентом может быть весьма мощный компьютер, который в силу своих возможностей решает задачи самостоятельно.

Компьютерные сети и сетевые технологии обработки информации стали основой для построения современных информационных систем. Компьютер ныне следует рассматривать не как отдельное устройство обработки, а как «окно» в компьютерные сети, средство коммуникаций с сетевыми ресурсами и другими пользователями сетей.

ЛОКАЛЬНЫЕ СЕТИ

АППАРАТНЫЕ СРЕДСТВА

Локальные сети (ЛС ЭВМ) объединяют относительно небольшое число компьютеров (обычно от 10 до 100, хотя изредка встречаются и гораздо большие) в пределах одного помещения (учебный компьютерный класс), здания или учреждения (например, университета). Традиционное название - локальная вычислительная сеть (ЛВС) - скорее дань тем временам, когда сети в основном использовались для решения вычислительных задач; сегодня же в 99% случаев речь идет исключительно об обмене информацией в виде текстов, графических и видео-образов, числовых массивов. Полезность ЛС объясняется тем, что от 60% до 90% необходимой учреждению информации циркулирует внутри него, не нуждаясь в выходе наружу.

Большое влияние на развитие ЛС оказало создание автоматизированных систем управления предприятиями (АСУ). АСУ включают несколько автоматизированных рабочих мест (АРМ), измерительных комплексов, пунктов управления. Другое важнейшее поле деятельности, в котором ЛС доказали свою эффективность -создание классов учебной вычислительной техники (КУВТ).

Благодаря относительно небольшим длинам линий связи (как правило, не более 300 метров), по ЛС можно передавать информацию в цифровом виде с высокой скоростью передачи. На больших расстояниях такой способ передачи неприемлем из-за неизбежного затухания высокочастотных сигналов, в этих случаях приходятся прибегать к дополнительным техническим (цифро-аналоговым преобразованиям) и программным (протоколам коррекции ошибок и др.) решениям.

Характерная особенность ЛС - наличие связывающего всех абонентов высокоскоростного канала связи для передачи информации в цифровом виде. Существуют проводные и беспроводные (радио) каналы. Каждый из них характеризуется определенными значениями существенных с точки зрения организации ЛС параметров:

Скорости передачи данных;

Максимальной длины линии;

Помехозащищенности;

Механической прочности;

Удобства и простоты монтажа;

Стоимости.

В настоящее времяобычно применяют четыре типа сетевых кабелей:

Коаксиальный кабель;

Незащищенная витая пара;

Защищенная витая пара;

Волоконно-оптический кабель.

Первые три типа кабелей передают электрический сигнал по медным проводникам. Волоконно-оптические кабели передают свет по стеклянному волокну.

Большинство сетей допускает несколько вариантов кабельных соединений.

Коаксиальные кабели состоят из двух проводников, окруженных изолирующими слоями. Первый слой изоляции окружает центральный медный провод. Этот слой оплетен снаружи внешним экранирующим проводником. Наиболее распространенными коаксиальными кабелями являются толстый и тонкий кабели «Ethernet». Такая конструкция обеспечивает хорошую помехозащищенность и малое затухание сигнала на расстояниях.

Различают толстый (около 10 мм в диаметре) и тонкий (около 4 мм) коаксиальные кабели. Обладая преимуществами по помехозащищенности, прочности, длине линий, толстый коаксиальный кабель дороже и сложнее в монтаже (его сложнее протягивать по кабельным каналам), чем тонкий. До последнего времени тонкий коаксиальный кабель представлял собой разумный компромисс между основными параметрами линий связи ЛВС и в российских условиях наиболее часто использовался для организации крупных ЛС предприятий и учреждений. Однако более дорогие толстые кабели обеспечивают лучшую передачу данных на большее расстояние и менее чувствительны к электромагнитным помехам.

Витые пары представляют собой два повода, скрученных вместе шестью оборотами на дюйм для обеспечения защиты от электромагнитных помех и согласования импеданса или электрического сопротивления. Другим наименованием, обычно употребляемым для такого провода, является «IBM тип-3». В США такие кабели прокладываются при постройке зданий для обеспечения телефонной связи. Однако использование телефонного провода, особенно когда он уже размещен в здании, может создать большие проблемы. Во-первых, незащищенные витые пары чувствительны к электромагнитным помехам, например электрическим шумам, создаваемым люминесцентными светильниками и движущимися лифтами. Помехи могут создавать также сигналы, передаваемые по замкнутому контуру в телефонных линиях, проходящих вдоль кабеля локальной сети. Кроме того, витые пары плохого качества могут иметь переменное числовитков на дюйм, что искажает расчетное электрическое сопротивление.

Важно также заметить, что телефонные провода не всегда проложены по прямой линии. Кабель, соединяющий два рядом расположенных помещения, может на самом деле обойти половину здания. Недооценка длины кабеля в этом случае может привести к тому, что фактически она превысит максимально допустимую длину.

Защищенные витые пары схожи с незащищенными, за исключением того, что они используют более толстые провода и защищены от внешнего воздействия слоем изолятора. Наиболее распространенный тип такого кабеля, применяемого в локальных сетях, «IBM тип-1» представляет собой защищенный кабель с двумя витыми парами непрерывного провода. В новых зданиях лучшим вариантом может быть кабель «тип-2», так как он включает помимо линии передачи данных четыре незащищенные пары непрерывного провода для передачи телефонных переговоров. Таким образом, «тип-2» позволяет использовать один кабель для передачикактелефонных переговоров, так и данных по локальной сети.

Защита и тщательное соблюдение числа повивов на дюйм делают защищенный кабель с витыми парами надежным альтернативным кабельным соединением. Однако эта надежность приводит к увеличению стоимости.

Волоконно-оптические кабели передают данные в виде световых импульсов по стеклянным «проводам». Большинство систем локальных сетей в настоящее время поддерживает волоконно-оптическое кабельное соединение. Волоконно-оптический кабель обладает существенными преимуществами по сравнению с любыми вариантами медного кабеля. Волоконно-оптические кабели обеспечивают наивысшую скорость передачи; они более надежны, так как не подвержены потерям информационных пакетов из-за электромагнитных помех. Оптический кабель очень тонок и гибок, что делает его транспортировку более удобной по сравнению с более тяжелым медным кабелем. Однако наиболее важно то, что только оптический кабель имеет достаточную пропускную способность, которая в будущем потребуется для более быстрых сетей.

Пока еще цена волоконно-оптического кабеля значительно выше медного.Посравнению с медным кабелем монтаж оптического кабеля более трудоемок, поскольку концы его должны быть тщательно отполированы и выровнены для обеспечения надежного соединения. Однако ныне происходит переход на оптоволоконные линии, абсолютно неподверженные помехам и находящиеся вне конкуренции по пропускной способности. Стоимость таких линий неуклонно снижается, технологические трудности стыковки оптических волокон успешно преодолеваются.