Самодельное портативное зарядное устройство для телефона. Зарядное устройство для портативных аккумуляторов. Импульсный преобразователь напряжения MC34063

Способ 4. Внешний энергонакопитель с солнечной батареей

Ещё один интересный вариант. Поскольку световой день начинает увеличиваться, актуально обсудить преимущества энергонакопителей солнечной энергии. Вы увидите, как изготовить переносное зарядное приспособление с возможностью заряда от панелей-накопителей солнечной энергии.

Нам необходимо:

  • Литий-ионный энергонакопитель формата 18650,
  • Футляр от этих же накопителей
  • Модуль повышения напряжения 5 В 1 А.
  • Плата заряда для аккумулятора.
  • Солнечная панелька 5,5 V 160 mA (любого размера)
  • Проводки для соединения
  • 2 диода 1N4007 (можно и другие)
  • Липучка или двусторонний скотч для фиксации
  • Термоклей
  • Резистор 47 Ом
  • Контакты для энергонакопителя (пластинки тонкой стали)
  • Пара тумблеров

  1. Изучим базисную схему внешнего аккума.

На схеме видно 2 соединительных проводка разных цветов. Красный подсоединяется к «+», чёрный к «-».

  1. Контакты к литий-ионной батарее паять не рекомендуется, поэтому поставим в корпусе клеммы и зафиксируем их с помощью термоклея.
  2. Следующая задача - разместить модуль увеличения напряжения и плату зарядки для аккумулятора. Для этого делаем отверстия для USB-входа и USB-выхода 5 В 1 А, тумблера и проводков к солнечной панели.
  3. Резистор (сопротивление 47 Ом) впаиваем к USB-выходу, с оборотной стороны модуля, увеличивающего напряжения. Это имеет смысл для зарядки IPhone. Резистор решит проблему с тем самым управляющим сигналом, который запускает процесс зарядки.
  4. Чтобы панели было удобно переносить, можно осуществить прикрепление контактов панели с помощью 2 маленьких контактов типа «мама-папа». Как вариант, можно соединить основной корпус и панельки с помощью липучек.
  5. Ставим диод между 1 контактом панели и платой заряда энергонакопителя. Диод стоит ставить стрелкой в сторону платы заряда. Это предотвратит разряжение накопительной батареи через солнечную панель.

ВАЖНО. Диод ставится в направлении ОТ солнечной панели ДО платы заряда.

На сколько зарядов хватит такого Повер банка? Всё зависит от ёмкости вашего аккумулятора и ёмкости гаджета . Помните, что разряжать литиевые накопителей ниже 2,7 В крайне нежелательно.

Что касается заряда самого устройства . В нашем случае мы использовали солнечные панели с общей ёмкостью в 160 mAh, а ёмкость аккумулятора - 2600 mAh. Следовательно, при условии прямых лучей батарея зарядится за 16,3 часа. При обычных условиях - около 20–25 часов. Но пусть эти числа вас не пугают. Через миниUSB зарядится за 2–3 часа. Скорей всего, солнечной панелью вы будете пользоваться в условиях путешествий, походов, дальних поездок.

В заключение

Выбирайте наиболее приемлемый для вас метод и сооружайте собственный портативный аккумулятор. Такая вещь точно пригодится в дороге или в путешествии. Преимуществ сделанного устройства масса: это уникальный внешний вид, а ещё способ получить ту мощность, которая удовлетворит именно ваши потребности. С помощью портативного аккумулятора можно заряжать не только телефоны, а и планшеты, беспроводные наушники и прочие мелкие гаджеты.

Поскольку портативные устройства являются необходимостью в современной повседневной жизни, они могут подвергаться чрезмерному использованию, неправильной зарядке или нормальному износу.

В этой статье удивительная идея о том, как изготовить собственными руками простую портативную зарядку для телефона. Собрать такое устройство будет нетрудно и недорого, для этого потребуется паяльник, флюс, припой, батарея Крона на 9 вольт, коннектор для батареи, USB-разъем, стабилизатор напряжения L7805 и, конечно, маленькая коробка от Tic Tac, в которую вся электронная начинка будет помещена. Если не решитесь делать самоделку, то загляните в этот китайский магазин .

Стабилизатор напряжения имеет три провода. Во-первых, вход. Второй – масса, третий – выход. Цифры 05 в маркировке этого устройства означают, что выход на нем будет равен 5 вольт.

Сначала нужно выход стабилизатора, а это правая лапка, припаять к плюсу USB-разъема. После этого нам нужно припаять средний вывод к отрицательной клемме. В завершение провод с плюсом от коннектора кроны припаиваем к первой лапке стабилизатора. Это его вход. Второй провод от коннектора кроны, с минусом, присоединяем к второй лапке стабилизатора, то есть к минусу и к массе.

Теперь все это можно разместить в коробочке от тик-так. Давайте портативное зарядное устройство протестируем. Выполним все необходимые соединения. И видим, что индикатор заряда показывает, что телефон начал подпитываться от этого автономного устройства. Конечно-же, такая зарядка не хватит надолго, поэтому для долгой эксплуатации нужно взять аккумуляторную крону.

Возможно, вас заинтересует , который можно использовать как девайс с функцией, которая была описана в нашей статье.

Зарядное устройство DIY USB С MINTY BOOST

НАМ ПОВЕЗЛО, что мы живем в то время, когда портативные электронные устройства позволяют нам делать то, что космический корабль, полный писателей-фантастов, не мог даже мечтать несколько десятилетий назад. Единственный недостаток iPhone, Nintendo DS, Kindle и др. – их постоянная потребность в перезарядке. И кажется, что независимо от того, насколько вы осторожны, чтобы подняться над этим до поездки, вы всегда можете не работать в самый неудобный момент. Конечно, есть кабели постоянного тока для автомобиля, штепсельные вилки на пригородных поездах и даже зарядные штепсельные вилки USB в аэропортах, но есть миллионы других мест, где вы обнаружите, что у вас нет вариантов быстрой зарядки.

По общему признанию, это едва ли даже первая мир о вая проблема , но это, безусловно, вызов для GeekDad, который любит решать проблемы.

Тогда какое решение? Ну, мы могли бы купить массовое решение, такое как Philips USB Power Station , но оно немного дорого и кажется слишком легким ответом. Итак, что бы Макгивер сделал в этой ситуации? Конечно, он построил зарядное устройство Minty Boost !

Комплект Minty Boost содержит печатную плату и все детали, необходимые для сборки портативного USB-зарядного устройства, которое работает от обычных батарей AA. Комплект требует пайки для сборки, что может быть проблемой для некоторых. Это, однако, довольно простой проект, и инструкции в AdaFruit фантастичны. Если вы ищете свой первый проект пайки, это отличный выбор.

Я собрал свой Minty Boost примерно через час, и мне даже не удалось сжечь себя для перемен. Вот несколько примеров действий:

Как только основная сборка была завершена, было просто вставить в пару батарей AA и проверить все. Когда я впервые проверил выход с помощью мультиметра, выходное напряжение было немного низким при 4,8 В. Это оказалось из-за почти мертвых батарей АА, которые я использовал. После того, как я заменил их новыми батареями, выходное напряжение было выше 5.0V, как и ожидалось.

На одном из радиолюбительских сайтов увидел схему для зарядки портативных Ni-Mn и Ni-Cd аккумуляторов с рабочим напряжением 1,2-1,4 В от USB-порта. С помощью этого устройства можно заряжать портативные аккумуляторные батарейки током примерно 100 мА. Схема несложная. Собрать её не составит труда даже начинающему радиолюбителю.

Конечно, можно купить готовое ЗУ. В продаже их сейчас великое множество и на любой вкус. Но их цена вряд ли удовлетворит начинающего радиолюбителя или того, кто способен сделать зарядное устройство своими руками.
Решил повторить эту схему, но сделать зарядное устройство для зарядки сразу двух аккумуляторов. Выдаваемый ток USB 2.0 составляет 500 mA. Так что можно смело подключить два аккумулятора. Доработанная схема выглядела так.

Так же хотелось, чтобы была возможность подключение внешнего источника питания напряжением 5 В.
Схема содержит всего восемь радиодеталей.

Из инструмента потребуется минимальный набор радиолюбителя: паяльник, припой, флюс, тестер, пинцет, отвёртки, нож. Перед пайкой радиодеталей их необходимо проверить на исправность. Для этого нам потребуется тестер. Резисторы проверить очень просто. Измеряем их сопротивление и сравниваем с номиналом. О том, как проверить диод и светодиод есть много статей в интернете.
Для корпуса использовал пластмассовый футляр размером 65*45*20 мм. Батарейный отсек вырезал из детской игрушки «Тетрис».

О переделке батарейного отсека расскажу подробней. Дело в том, что изначально
плюсы и минусы клемм питания батареек установлены противоположно. Но мне нужно было, что бы в верхней части отсека располагались две изолирование плюсовые клеммы, а внизу одна общая минусовая. Для этого я нижнюю плюсовую клемму перенёс наверх, а общую минусовую вырезал из жести, припаяв оставшиеся пружины.



В качестве флюса при паянии пружин применял паяльную кислоту с соблюдением всех правил техники безопасности. Место пайки обязательно промыть в проточной воде до полного удаления следов кислоты. Провода от клемм подпаял и пропустил внутрь корпуса через просверленные отверстия.

Батарейный отсек закрепил на крышке футляра тремя маленькими шурупами.
Плату выпилил из старого модулятора игровой приставки «Денди». Удалил все ненужные детали и дорожки печатного монтажа. Оставил только гнездо питания. В качестве новых дорожек использовал толстый медный провод. В нижней крышке просверлил отверстия для вентиляции.

Готовая плата плотно села в корпус, поэтому я её закреплять не стал.

После установки всех радиодеталей на свои места проверяем правильность монтажа и очищаем плату от флюса.
Теперь займёмся распайкой шнура питания и установкой тока зарядки для каждого аккумулятора.
В качестве шнура питания использовал USB шнур от старой компьютерной мышки и кусок питающего провода со штекером от «Денди».

Шнуру питания нужно уделить особое внимание. Ни в коем случае нельзя перепутать «+» и «-». У меня на штекере «+» питания подключен к центральному контакту чёрным проводом с белой полосой. А «-» питания идёт по чёрному (без полосы) проводу на наружный контакт штекера. На USB шнуре «+» идёт на красный провод а «-» на чёрный. Спаиваем плюс с плюсом и минус с минусом. Места пайки тщательно изолируем. Далее проверяем шнур на короткое замыкание, подключив тестер в режиме измерения сопротивления к клеммам штекера. Тестер должен показать бесконечное сопротивление. Все надо тщательно перепроверить, что бы ни спалить USB-порт. Если всё нормально, подключаем наш шнур к USB-порту и проверяем напряжение на штекере. Тестер должен показать 5 вольт.

Последний этап настройки это установка зарядного тока. Для этого разрываем цепь диода VD1 и «+» аккумулятора. В разрыв подключаем тестер в режиме измерения тока включенного на предел 200 mA. Плюс тестера на диод, а минус к аккумулятору.

Вставляем аккумулятор на место, соблюдая полярность, и подаём питание. При этом должен загореться светодиод. Он сигнализирует о том, что аккумулятор подключен. Далее, изменяя сопротивление R1, устанавливаем требуемый ток заряда. В нашем случае он равен примерно 100 mA . При уменьшении сопротивления резистора R1 зарядный ток увеличивается, а при увеличении уменьшается.

То же самое делаем для второго аккумулятора. После этого скручиваем наш корпус и
зарядное устройство готово к использованию.
Поскольку различные пальчиковые аккумуляторы имеют разную
емкость, потребуется разное время для зарядки этих аккумуляторов. Аккумуляторы
емкостью 1400 мА/ч с напряжением 1,2 В потребуется заряжать с помощью данной
схемы примерно 14 часов, а аккумуляторы 700 мА/ч потребуется всего 7 часов.
У меня имеются аккумуляторы емкостью 2700 мА/ч. Но заряжать их 27 часов от USB-порта не хотелось. Поэтому я и сделал гнездо питания для внешнего источника питания 5 вольт 1А, который у меня лежал без дела.

Вот ещё несколько фото готового устройства.

Наклейки рисовал программой FrontDesigner 3.0. Затем распечатал на лазерном принтере. Вырезал ножницами, наклеил лицевой стороной на тонкий скотч шириной 20 мм. Лишний скотч обрезал. В качестве клея использовал клей-карандаш, предварительно смазав им и наклейку и место, куда она клеится. Насколько это надёжно, пока не знаю.
Теперь плюсы и минусы данной схемы.
Плюс в том, что схема не содержит дефицитных и дорогостоящих деталей и собирается буквально на коленке. Так же есть возможность запитать от USB-порта, что не мало важно для начинающих радиолюбителей. Не надо ломать голову, откуда запитать схему. Не смотря на то, что схема очень простая, данный способ зарядки используется во многих промышленных зарядных устройствах.
Так же можно немного усложнив схему реализовать переключение зарядного тока.

Подбором R1,R3 и R4 можно выставить зарядный ток для разных по ёмкости аккумуляторов, тем самым обеспечив рекомендуемый зарядный ток для данного аккумулятора, который обычно равен 0,1C (C-ёмкость аккумулятора).
Теперь минусы. Самый большой, это отсутствие стабилизации зарядного тока. То есть
При изменении входного напряжения будет изменятся зарядный ток. Так же при ошибке в монтаже или коротком замыкании схемы есть большая вероятность спалить USB-порт.

Здравствуйте дорогие друзья!

Сегодня я расскажу вам как сделать своими руками "Портативное USB зарядное устройство".

Для этого нам понадобится:

1. Автомобильное зарядное USB устройство в прикуриватель.

2. Четыре проводочка.

3. Маленький включатель вкл/выкл. Его я взял из старой настольной лампы. Но он оказался не практичным и я его заменил на включатель от светильничка.

4. Три аккумуляторных батарейки "Крона".

5. Коробочка от кофе "Fort",или от чего либо. Нужна либо железная либо пластмасовая.

6. Клеевій пистолет.

И так: Берём нашу автомобильную USB зарядку в прикуриватель,розбираем её,достаём плату. Это и есть самая главная часть нашей портативной зарядки. С одной стороны этой платы вы увидите пружинку и маленький кусочек железной пластинки. Пружинка посредине это всегда плюс а железная пластинка сбоку это всегда минус. Пружинка может быть просто припаяна к плате или к проводоку а проводок уже к плате. Так же и с этой железкой сбоку.. Если пружинка припаяна к плате тогда берём аккуратненько отпаеваем её и на её место припаеваем проводок. Потом так же и с этой железкой. Если же пружинка припаяна к проводку то просто отпаеваем пружинку от проводка. Так же и с этой железкой.После того как припаяли проводки к плате отлажеваем её пока в сторону. Приступаем к изготовлению клемы которая нам понадобится что бы подключать батарейку. Готовую клему можно снять из старых детских игрушек или из чего либо где приманялась батарейка типа "Крон". Или же её можно изготовить самому. Для этого берём одну батарейку "Крон" снемаем с неё клуму,переворачиваем её,берём флюс для пайки,мокаев него ватную палочку и обезжириваем контакты. После чего берём проводочки и припаеваем их к контактам. После того как припаяли берём клеевый пистолет и наносим клей на место где припаяли проводочки. Таким образом мы просто делаем изоляцию. Потом берём нашу клему и поделючаем к ней батарейку. Делаем это для того что бы убедится где у нас плюс а где минус. Когда убедились где плюс а где минус берём нашу плату к которой мы припаевали проводочки вместо пружинки с железкой, и скручиваем проводочки минус с минусом и аккуратненько изолируем проводочки которые мы скрутили изолентой. А плюс мы пустим через включатель. Для этого берём наш включатель в нём есть два контакта к одному припаеваем проводок который идёт от нашей платы а к другому припаеваем проводок который идёт от клемы. Теперь наше зарядное устройство почти готово. Осталось токо поместить это всё в корпус.
Для этого берём нашу коробочку в моём случаи это коробочка "Аптечка АРМ" для ремонта пневматических шин.. Проделываем отверстие под USB.
После чего проделываем отверстие под наш включатель.

Теперь берём наши внутренности. А это наша плата,включатель, и клема. И устанавлеваем это всё в нутри коробочки. Крепим плату ко дну коробочки при помощи клеевого пистолета как и наш включатель. Его тоже крепим к коробочке при помощи клеевого пистолета.
Теперь подключаем нашу батарейку, закрываем коробочку. Подключаем телефон,включаем зарядку и наш телефон заряжается. P.S Входная мощность автомобильных USB зарядных устройств в прикуриватель всего 12В поэтому не вкоем случаи не подключайте ёё к источникам питания свыше 12В в таком случаи она просто згорит. Мощность батарейки "Крон" которую я использовал для даного портативного зарядного устройства всего 9В этого вполне достаточно что бы зарядить телефон,айфон,фотоапарат,планшет и т.д. приблезительно 2-3 раза в зависимости от мощности вашего аккумулятора..после чего придётся менять батарейку. У меня аккумулятор в телефоне мощностью 3000 mAh поэтому батарейки "Крон" хватает чтобы токо поддерживать заряд аккумулятора а не полностью зарядить его. Поэтому я заменил батарейку "Крон" на 12В аккумулятор,чего вполне достаточно что бы зарядить телефон. Для этого просто изготавливаем 2 клемы из батареек "Крон" одну из них припаеваем к аккумулятору и всё и просто подключаем в наше портативное зарядное устройство. Но что бы не покупать каждый раз новую батарейку я бы советовал вам приобрести зарядное устройство для батареек "Крон" и когда у вас одна батарейка сядит вы её ставите на зарядку а другую ставите в ваше портативное зарядное. Или же зарядное устройство для батареек "Крон" вы сможете сделать своими руками. А как? Об это я расскажу вам в следующем выпуске. Всем пока,всего хорошего. Если возникнут вопросы пишите на мой ящик.

Прислал:

Описана конструкция самодельного накопителя (PowerBank"а) типа "Вампирчика". Дана схема и описание ее изготовления. Вообще, приятно читать подобные материалы, где автор серьезно подходит к делу.

Пролог

На идею постройки этой конструкции меня натолкнул полёт в самолёте Airbus A380, в котором под подлокотником каждого кресла имеется разъём USB, предназначенный для питания USB-совместимых устройств.

Но, такая роскошь есть не во всех самолётах, а уж тем более её не найти в поездах и автобусах. А я уже давно мечтаю пересмотреть от начала до конца сериал «Друзья». Так почему бы не убить сразу двух зайцев – посмотреть сериал и скрасить время в пути. Дополнительным стимулом к постройке данного девайса стало открытие залежей мощных литий-ионными аккумуляторов.

Техническое задание

Портативое Зарядное Устройство (ЗУ) должно обеспечить следующие возможности.

1. Время работы в автономном режиме под номинальной нагрузкой, не менее – 10 часов. Литий-ионные аккумуляторы большой ёмкости, как нельзя лучше подходят для этого.

2. Автоматическое включение и отключение ЗУ в зависимости от наличия нагрузки.

3. Автоматическое отключение ЗУ при критическом разряде аккумулятора.

4. Возможность принудительного включения ЗУ при критическом разряде аккумулятора, в случае необходимости. Я полагаю, что в дороге может сложиться такая ситуация, когда аккумулятор портативного ЗУ уже разряжен до критического уровня, но необходимо подзарядить телефон для экстренного звонка. В этом случае, нужно предусмотреть кнопку «Экстренного включения», чтобы использовать всё ещё имеющуюся в аккумуляторе энергию.

5. Возможность заряда аккумуляторов портативного ЗУ от сетевого зарядного устройства с интерфейсом Mini USB. Так как зарядное устройство от телефона всё равно всегда берут с собой в дорогу, то можно его использовать и для заряда аккумуляторов портативного БП перед обратной дорогой.

6. Одновременный заряд аккумуляторов ЗУ и подзарядка мобильного телефона от одного и того же сетевого зарядного устройства. Так как сетевое зарядное устройство от мобильного телефона не может обеспечить достаточный ток для быстрого заряда аккумулятора портативного ЗУ, то заряд может растянуться на сутки и более. Поэтому, должна быть возможность подключить телефон на заряд прямо во время заряда батареи портативного БП.

Исходя из этого технического задания, было построено портативное ЗУ на литий-ионных аккумуляторах.

Блок схема


Портативное ЗУ состоит из следующих узлов.

1. Преобразователь 5 > 14 Вольт.
2. Компаратор, отключающий преобразователь заряда при достижении напряжения на батарее литий-ионных аккумуляторов 12,8 Вольт.
3. Индикатор заряда – светодиод.
4. Преобразователь 12,6 > 5 Вольт.
5. Компаратор 7,5 Вольт, отключающий ЗУ при глубоком разряде батареи.
6. Таймер, определяющий время работы преобразователя при критическом разряде батареи.
7. Индикатор работы преобразователя 12,6 > 5 Вольт – светодиод.

Импульсный преобразователь напряжения MC34063


Долго выбирать драйвер для преобразователя напряжения не пришлось, так как выбирать то было особенно не из чего. На местном радиорынке по разумной цене (0,4$) я нашёл только популярную микросхему MC34063. Сразу купил парочку, чтобы выяснить, возможно ли как-либо принудительно отключить преобразователь, так как в даташите на данный чип такая функция не предусмотрена. Оказалось, что сделать это возможно, если подать на вывод 3, предназначенный для подключения частотозадающей цепи, напряжение питания.

На картинке типовая схема понижающего импульсного преобразователя. Красным отмечена цепь принудительного отключения, которая может понадобиться для автоматизации.

В принципе, собрав такую схему, уже можно запитать телефон или плеер, если, например, питание будет осуществляться от обычных элементов питания (батареек).

Я не буду подробно описывать работу этой микросхемы, но из «Дополнительных материалов» вы можете скачать и подробное описание на русском языке, и небольшую портативную программу для быстрого расчёта элементов повышающего или понижающего преобразователя, собранного на этой микросхеме.

Узлы управления зарядом и разрядом литий-ионной батареи

При использовании литий-ионных батарей, желательно ограничивать их разряд и заряд. Я для этой целей использовал компараторы на основе копеечных микросхем КМОП. Микросхемы эти крайне экономичны, так как работают на микротоках. На входе у них стоят полевые транзисторы с изолированным затвором, что даёт возможность применить микротоковый же Источник Опорного Напряжения (ИОН). Где взять такой источник я не знаю (Можно попобовать применить LM385 на 1.2В или 2.5В. Прим.ред. ), поэтому воспользовался тем обстоятельством, что в режиме микротоков, напряжение стабилизации обычных стабилитронов снижается. Это позволяет управлять напряжением стабилизации в некоторых пределах. Так как это не задокументированное включение стабилитрона, то, возможно, для обеспечения определённого тока стабилизации, стабилитрон придётся подобрать.

Чтобы обеспечить ток стабилизации, скажем, 10-20 мкА, сопротивление балласта должно быть в районе 1-2 МОм. Но, при подгонке напряжения стабилизации, сопротивления балластного резистора может оказаться, либо слишком маленьким (несколько килоом), либо слишком большим (десятки мегаом). Вот тогда придётся подобрать не только сопротивление балластного резистора, но и экземпляр стабилитрона.

Переключение цифровой КМОП микросхемы происходит тогда, когда уровень входного сигнала достигает половины напряжения питания. Поэтому, если запитать ИОН и микросхему от источника, напряжение которого требуется измерить, то на выходе схемы можно получить сигнал управления. Ну, а этот самый сигнал управления и можно подать на третий вывод микросхемы MC34063.

На чертеже изображена схема компаратора на двух элементах микросхемы К561ЛА7.

Резистор R1 определяет величину опорного напряжения, а резисторы R2 и R3 гистерезис компаратора.

Узел включения и идентификации зарядного устройства

Чтобы телефон или плеер начал заряжаться от разъёма USB, ему нужно дать понять, что это разъём USB, а не какой-то суррогат. Для этого можно подать на контакт «-D» положительный потенциал. Во всяком случае, для Blackberry и iPod-а этого достаточно. Но, моё фирменное зарядное устройство подаёт положительный потенциал ещё и на контакт «+D», поэтому я поступил точно так же.


Другое назначение этого узла – управление включением и выключением преобразователя 12,6 > 5 Вольт при подключении нагрузки. Эту функцию выполняют транзисторы VT2 и VT3.

В конструкции портативного ЗУ предусмотрен и механический выключатель питания, но его назначение скорее соответствует "выключателю массы" АКБ в автомобиле.


Электрическая схема портативного блока питания

На рисунке представлена схема мобильного блока питания.

C1, C3 = 1000мкФ

C2, C6, C10, C11, C13 = 0,1мкФ

C4, C5 = 680пФ

C14 = 20мкФ (танталовый)

IC1, IC2 – MC34063
DD1 = К176ЛА7

DD2 = К561ЛЕ5

R28 = 3k

R5 = 30k

VD1, VD2 = 1N5819

HL1 = Green

VD3, VD6 = КД510А

R8, R15, R23, R29 = 100k

VT1, VT2, VT3 = КТ3107

L1 = 50mkH

R10, R11, R13, R26 = 1m

VT4 = КТ3102
L2 = 100mkH

Подбираются

R17, R19, R25 = 15k

R14* = 2m
R1 = 180

R22* = 510k

VD4*,VD5* = КС168А

Назначение узлов схемы.

IC1 – повышающий преобразователь напряжения 5 > 14 Вольт, который служит для заряда встроенной аккумуляторной батареи. Преобразователь ограничивает входной ток на уровне 0,7 Ампера.

DD1.1, DD1.2 – компаратор заряда батареи. Прерывает заряд по достижению 12,8 Вольт на батарее.

DD1.3, DD1.4 – генератор индикации. Заставляет мигать светодиод во время заряда. Индикация сделана по аналогии с зарядными устройствами Nikon. Пока идёт заряд, светодиод мигает. Заряд окончен – светодиод горит постоянно.

IC2 – понижающий преобразователь 12,6 > 5 Вольт. Ограничивает выходной ток на уровне 0,7 Ампера.

DD2.1, DD2.2 – компаратор разряда батареи. Прерывает разряд батареи при снижении напряжения до 7,5 Вольт.

DD2.3, DD2.4 – таймер экстренного включения преобразователя. Включает преобразователь на 12 минут, даже если напряжение на батарее упало до 7,5 Вольт.

Тут может возникнуть вопрос, почему выбрано такое низкое пороговое напряжение, если некоторые производители не рекомендуют допускать его снижение ниже 3,0 и даже 3,2 Вольта на банке?

Я рассуждал так. Путешествия случаются не так часто, как этого бы хотелось, поэтому батарее вряд ли придётся пережить много циклов заряда-разряда. Между тем, в некоторых источниках, описывающих работу литий-ионных батарей, напряжение 2,5 Вольта как раз называют критическим.

Но, Вы можете ограничить предельный разряд более высоким уровнем напряжения, если предполагается часто использовать подобное зарядное устройство.

Конструкция и детали

Печатные платы (ПП) изготовлены из фольгированного стеклотекстолита толщиной 1мм. Размеры ПП выбраны исходя из размеров приобретённого корпуса.


Все элементы схемы, кроме аккумуляторной батареи, размещены на двух печатных платах. Причём на меньшей расположен только разъём Mini USB для подключения внешнего зарядного устройства.

Узлы БП были помещены в стандартный полистироловый корпус Z-34. Это самая дорогая деталь конструкции, за которую пришлось выложить 2,5$.


Выключатель питания поз.2 и кнопка принудительного включения поз.3 спрятаны заподлицо с внешней поверхностью корпуса, во избежание случайного нажатия.

Разъём Mini USB выведен на заднюю стенку корпуса, а разъём USB поз. 4 вместе с индикаторами поз. 5 и поз.6 на переднюю.

Размер печатных плат рассчитан так, чтобы зафиксировать аккумуляторы в корпусе портативного БП. Между аккумуляторами и другими элементами конструкции вставлена прокладка из электрокартона толщиной 0,5мм, согнутая в виде коробки.

А это портативный БП в собранном виде.

Настройка

Настройка портативного зарядного устройства свелась к подбору экземпляров стабилитронов и сопротивлений балластных резисторов для каждого из двух компараторов.

Как подогнать резисторы с высокой точностью описано .