Биометрические методы защиты информации. Биометрическая аутентификация: защита систем и конфиденциальность пользователей Какие существуют биометрические способы защиты информации

Сканирование радужной оболочки глаза либо распознавание голоса при входе на секретный объект уже давно перестало быть только элементом шпионских фильмов. Биометрические системы защиты со временем становятся всё надежнее и доступнее, что дает повод обратить внимание на этот спектр технологий.

Методы биометрической аутентификации

Для начала немного терминологии. Аутентификация - это процедура проверки подлинности с помощью считывания определенных параметров (как пароль или подпись) и сравнения их со значением в некой базе данных (пароль, введенный при регистрации, образцы подписи и т.д.). Биометрическая аутентификация происходит с использованием в качестве ключа биологических свойств, которые обладают уникальностью и поддаются измерению.

Достоинства этой группы методов лежат на поверхности: потерять, похитить или подделать параметр-ключ сложнее, чем пароль или карточку, ведь это свойство человека, которые всегда при нём.

Биометрическая аутентификация разделяется на два типа:

  1. Статическая , где используются постоянные в течение жизни свойства (рисунок отпечатка пальца, узор сетчатки или радужной оболочки глаза и т.д.).
  2. Динамическая , где используются приобретённые свойства человека (особенности выполнения привычных действий: движения, речь, подчерк).

Можно выделить и третий тип - комбинированная аутентификация, который является сочетанием первых двух и не имеет собственных отличительных черт.

Статические методы

На основании распознавания стабильных (относительно) и уникальных параметров человеческого тела создано большое разнообразие методов аутентификации с разными характеристиками.

Принцип работы

Достоинства

Недостатки

Дактилоскопическая

Считывание отпечатков пальцев, распознавание в них определённых элементов (точки, окончания и разветвления линий и тд) и переведение их в код

Высокая достоверность (низкий процент ошибок), сравнительно низкая стоимость устройств считывания, простота процедуры.

Уязвимость метода к подделке рисунка пальца и проблемы с распознаванием слишком сухой либо повреждённой кожи.

По радужной оболочке глаза

Производится снимок радужной оболочки, перерабатывается и сравнивается алгоритмом со значениями в базе данных.

Высокая достоверность, бесконтактное считывание, удобство объекта (повреждается или изменяется реже в сравнении с другими частями тела), возможность эффективной защиты от подделки.

Высокая стоимость, небольшое количество вариантов в продаже.

По чертам лица (двухмерная)

Распознавание лица на изображении с измерением расстояния между определенными точками

Не требует дорогого оборудования, допускает распознавание на большом расстоянии.

Низкая достоверность, искажающие воздействия освещения, мимики, ракурса.

По чертам лица (трехмерная)

Создание трёхмерной модели лица путём проецирования и считывания специальной сетки с последующей возможностью распознавания снимков с нескольких камер.

Высокая достоверность, бесконтактное считывание, отсутствие чувствительности к световым помехам, наличию очков, усов и т.д.

Высокая стоимость оборудования, искажающие воздействия мимики.

По венам руки

Делается снимок ладони инфракрасной камерой, на котором четко отображается и распознаётся уникальный рисунок вен.

Высокая достоверность, бесконтактное считывание, «невидимость» параметра в обычных условиях.

Уязвимость к засветке сканера и искажению картины некоторыми заболеваниями, слабая изученность метода.

По сетчатке глаза

Считывание инфракрасным сканером рисунка сосудов с поверхности сетчатки.

Высокая достоверность, сложность фальсификаций.

Сравнительно большое время обработки и дискомфорт при сканировании, высокая стоимость, слабое распространение на рынке.

По геометрии рук

Производится снимок кисти и считываются её геометрические характеристики (длина и ширина пальцев, ладони и т.д.)

Низкая стоимость, бесконтактное считывание.

Низкая достоверность, устаревший метод.

По термограмме лица

Инфракрасная камера считывает «тепловой портрет»

Бесконтактное считывание.

Низкая достоверность, слабое распространение.

Динамические методы

Способов аутентификации на основании приобретённых черт разработано меньше, и по надёжности и достоверности они уступают большинству статических. В то же время, ценовая характеристика динамических методов и простота в применении добавляют им привлекательности.

Название метода аутентификации

Принцип работы

Достоинства

Недостатки

Простое и доступное оборудование, легкость в применении, технология продолжает развиваться.

Низкая точность, уязвимость к звуковым помехам и искажению голоса при простуде, сложности с вариациями интонации и тембра для каждого человека.

По почерку

Делается подпись при помощи специальной ручки или поверхности, может анализироваться как сама подпись, так и движения руки.

Относительная доступность и простота применения.

Низкая точность.

Системы биометрической защиты

Независимо от того, какой метод аутентификации используется, все они служат одной цели: отличить человека или группу людей с разрешенным доступом от всех остальных.

Применение в повседневной жизни

В быту биометрические технологии встречаются все чаще. В первую очередь в смартфоне, пожизненном спутнике современного человека, выполнима реализация сразу нескольких методов подтвердить личность владельца:


Постоянно улучшаются не только технологии считывания, но и алгоритмы распознавания.

Уже выпущены модели со сканерами сетчатки и радужной оболочки глаза, но пока эти технологии нельзя назвать совершенными, т.к. есть информация, что их относительно просто обмануть.

Те же способы можно использовать для защиты доступа к информации на других гаджетах и ПК, к приборам в «умном доме». В продаже уже можно найти дверные замки, где вместо ключа служит палец, и рынок биометрических технологий для быта продолжает активно развиваться. Не смотря на постоянные инновации и усовершенствования других направлений, на данный момент, дактилоскопический метод является самым проработанным, распространённым и подходящим для персонального использования.

Применение в системах управления и контроля доступом (СКУД)

Существует множество предприятий, вход на территорию которых разрешен только определенному кругу лиц. Обычно они имеют ограждение, охрану и пропускные пункты. На пропускных пунктах находятся:

  • котроллер (управляющий элемент, принимающий решение разрешить ли доступ);
  • считыватель (сенсорный элемент, который воспринимает идентификаторы);
  • идентификаторы (ключи для получения доступа) у всех, кто должен пройти внутрь.

С точки зрения организации защитной системы, значение имеет количество проходящих контроль людей, допустимый уровень ошибок и устойчивость к обману.

Основанные на биометрических признаках (в качестве идентификаторов) системы в этом смысле хорошо себя зарекомендовали. При необходимости максимально строгого контроля используют наиболее надёжные методы (аутентификация по сетчатке, радужной оболочке, отпечатку пальца), иногда их комбинацию. Для рядовых предприятий (где основная цель - определить, присутствует ли рабочий на месте и сколько времени) подходят менее надежные, но более простые в исполнении решения (голосовая аутентификация и прочие).

Производители оборудования для биометрической защиты

Крупнейшие компании на рынке:

  • BioLink (Россия) выпускает системы с использованием комбинированных методов аутентификации, например BioLink U-Match 5.0 - сканер отпечатков пальцев со встроенным считывателем магнитных и/или чиповых карт.

  • ZKTeco (Китай) распространяет недорогие устройства, которые производят управление доступом и учет времени работы для заводов, финансовых и государственных учреждений. Используются отпечатки пальцев и геометрия лица.

  • Ekey biometric systems (Австрия) - европейский лидер, производит дактилоскопические сканеры, которые для большей точности применяют тепловой и радиочастотный анализ.

Биометрика же напротив она представляет собой методику распознавания и идентификации людей на основе их индивидуальных психологических или физиологических характеристик: отпечаток пальцев геометрия руки рисунок радужной оболочки глаза структура ДНК и т. Биометрическая защита по предъявлению отпечатков пальцев Это самый распространенный статический метод биометрической идентификации в основе которого лежит уникальность для каждого человека рисунка папиллярных узоров на пальцах. Для...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Другие похожие работы, которые могут вас заинтересовать.вшм>

17657. СИСТЕМА КОНТРОЛЯ ДОСТУПА 611.85 KB
В настоящее время одним из наиболее эффективных и современных подходов к решению задачи комплексной безопасности объектов различных форм собственности является использование систем контроля и управления доступом СКУД. Правильное использование СКУД позволяет закрыть несанкционированный доступ на территорию в здание отдельные этажи и помещения. Экономический эффект от внедрения СКУД может оцениваться как снижение затрат на содержание персонала охраны за вычетом стоимости аппаратуры...
13184. Модернизация программной защиты ОАО «Альфапроект» для разграничения доступа 787.27 KB
Анализ соответствия требованиям по защите информации и выбор метода к повышению ее безопасности. Модернизация программной защиты ОАО Альфапроект для разграничения доступа. Характеристика разработанной программы для назначения прав доступа. Операционная система ОС –комплекс взаимосвязанных программ предназначенных для управления ресурсами вычислительного устройства и организации взаимодействия с пользователем. Согласно схеме производственного документооборота заказчик подает перечень документов необходимых для проекта...
12068. Способ получения противообрастающего покрытия для защиты подводной части судов и кораблей от морской коррозии и обрастания 18.66 KB
Огромное значение для успешного мореплавания имеет борьба с коррозией и обрастанием судов. введен запрет на применение в покрытиях для защиты от коррозии и обрастания подводной части судов токсичных соединений тяжелых металлов. В результате разработана технология получения в том числе в промышленных условиях противообрастающего покрытия Скат по ТУ231319456271024 для защиты объектов морской техники от морской коррозии и обрастания на срок не менее 45 лет в условиях тропических морей 56 лет для морей умеренной климатической зоны.
20199. Основные методы защиты информации 96.33 KB
Юридические основы информационной безопасности. Основные методы защиты информации. Обеспечение достоверности и сохранности информации в автоматизированных системах. Обеспечение конфиденциальности информации. Контроль защиты информации.
9929. Алгоритмические методы защиты информации 38.36 KB
Для нормального и безопасного функционирования этих систем необходимо поддерживать их безопасность и целостность. Что такое криптография Криптография наука о шифрах – долгое время была засекречена так как применялась в основном для защиты государственных и военных секретов. В настоящее время методы и средства криптографии используются для обеспечения информационной безопасности не только государства но и частных лиц организаций. Пока криптографические алгоритмы для рядового потребителя – тайна за семью печатями хотя многим уже...
1825. Методы и средства защиты информации 45.91 KB
Создать концепцию обеспечения информационной безопасности шинного завода, имеющего конструкторское бюро, бухгалтерский отдел, использующий систему “Банк-клиент”. В процессе производства используется система система антивирусной безопасности. Предприятие имеет удаленные филиалы.
4642. Программные средства защиты информации в сетях 1.12 MB
Различные способы защиты информации использовались людьми на протяжении тысячелетий. Но именно в течение нескольких последних десятилетий криптография – наука о защите информации – переживает невиданный доселе прогресс, обусловленный
17819. Разработка системы защиты информации офиса 598.9 KB
Утечка любой информации может отразиться на деятельности организации. Особую роль играет конфиденциальная информация, потеря корой может повлечь большие изменения в самой организации и материальные потери. Поэтому мероприятия по защите информации в данное время очень актуальны и важны.
13721. МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ КОМПЬЮТЕРНОЙ ИНФОРМАЦИИ 203.13 KB
Задачи защиты информации: – обеспечение целостности и сохранности информации; – ограничение доступа к важной или секретной информации; – обеспечение работоспособности информационных систем в неблагоприятных условиях. Оптимальный вариант – это и резервирование и копирование Угроза раскрытия Важная или секретная информация попадает в руки у которых нет доступа к ней. Угроза отказа обслуживания – несоответствие реальной нагрузки и максимально допустимой нагрузки информационной системы; – случайное резкое увеличение числа запросов к...
18765. Проблемы защиты информации в Internet. Интернет-угрозы 28.1 KB
Другими словами: в архивах свободного доступа Internet можно найти любую информацию по всем спекторам деятельности человека от научных открытий до телепрограммы. Вирус находит и угнетающе действует на программы а также выполняет какие-нибудь вредоносные действия. Тем самым внешне работа зараженной программы выглядит так же как и незараженной. Действия которые производит вирус могут выполнятся с большой скоростью и без каких-либо сообщений из-за чего пользователь не моет заметить некорректной работы компьютера или программы.

Владислав Шаров

Безопасность - это субстанция, которую трудно оценить количественно, поскольку сложно представить себе клиента, жертвующего собственной безопасностью из соображений экономии. Рост террористической угрозы и необходимость совершенствования систем обеспечения безопасности привели к тому, что объем рынка биометрического оборудования в последнее время начал быстро расти, - ожидается, что к 2007 г. он достигнет 7 млрд долл. Крупнейшими заказчиками биометрических систем станут не только коммерческие учреждения, но и государственные службы и ведомства. Особое внимание будет уделяться аэропортам, стадионам и другим объектам, нуждающимся в системах массового контроля посетителей.

Уже в 2006 г. граждане стран Евросоюза станут обладателями так называемых электронных паспортов - документов, построенных на специальной микросхеме, в которой записаны некоторые биометрические данные владельца (например, информация об отпечатках пальцев, радужной оболочке глаза), а также сопутствующие гражданские данные (номера карточки страхования, водительского удостоверения, банковских счетов и т. п.). Область применения таких документов практически неограниченна: их можно использовать как международные удостоверения личности, кредитные карты, медицинские карты, страховые полисы, пропуска - список можно продолжать и продолжать. 20 сентября 2004 г. Президент РФ подписал распоряжение о создании межведомственной группы, которая должна заниматься подготовкой к внедрению паспортов с биометрической информацией. Срок для подготовки пакета документов был дан до 1 января 2006 г.

Но если в повседневной жизни к биометрическим системам нам еще придется привыкать, то в некоторых областях биометрия уже активно используется на протяжении нескольких лет. И одна из таких областей - компьютерная безопасность. Самое распространенное решение на базе биометрических технологий - это идентификация (или верификация) по биометрическим характеристикам в корпоративной сети или при запуске рабочей станции (ПК, ноутбук и т. д.).

Биометрическое распознавание объекта заключается в сравнении физиологических или психологических особенностей этого объекта с его характеристиками, хранящимися в базе данных системы. Главная цель биометрической идентификации заключается в создании такой системы регистрации, которая бы крайне редко отказывала в доступе легитимным пользователям и в то же время полностью исключала несанкционированный вход в компьютерные хранилища информации. По сравнению с паролями и карточками такая система обеспечивает гораздо более надежную защиту, ведь собственное тело нельзя ни забыть, ни потерять.

Если речь идет о защите рабочей станции, то шаблоны биометрических данных (например, отпечатков пальцев) зарегистрированных пользователей находятся в защищенном хранилище непосредственно на этой рабочей станции. После успешного прохождения процедуры биометрической идентификации пользователю предоставляется доступ в операционную систему. В случае корпоративной сети все шаблоны биометрических данных всех пользователей сети хранятся централизованно на специально выделенном сервере аутентификации. При входе в сеть пользователь, проходя процедуру биометрической идентификации, работает непосредственно со специализированным сервером, на котором и происходит проверка предоставляемых идентификаторов. Выделение в структуре корпоративной сети отдельного сервера биометрической аутентификации позволяет строить масштабируемые сетевые решения и хранить на таком сервере конфиденциальную информацию, доступ к которой будет предоставлен только по биометрическому идентифицирующему признаку владельца информации.

При построении корпоративных решений достаточно часто, кроме входа в сеть, процедуры биометрической проверки интегрируются в другие используемые в компании программы, например, в системы управления предприятием, различные офисные приложения, корпоративное ПО и т. д. При таком подходе необходимые для идентификации данные всех пользователей централизованно сохраняются на сервере аутентификации, а сам пользователь освобождается от необходимости запоминать пароли для всех используемых программ или постоянно носить с собой различные карточки.

Кроме того, достаточно широкое распространение получили средства криптографической защиты, в которых доступ к ключам шифрования предоставляется только после биометрической идентификации их владельца. Надо отметить, что в сфере компьютерной безопасности шаблон используемой биометрической характеристики, как правило, подвергается одностороннему преобразованию, т. е. из него нельзя путем обратной процедуры восстановить отпечаток пальца или рисунок радужной оболочки глаза.

Методы аутентификации

Как известно, аутентификация подразумевает проверку подлинности субъекта, которым в принципе может быть не только человек, но и программный процесс. Вообще говоря, аутентификация индивидов возможна при предъявлении информации, хранящейся в разной форме. Аутентификация позволяет обоснованно и достоверно разграничить права доступа к информации, находящейся в общем пользовании. Однако, с другой стороны, возникает проблема обеспечения целостности и достоверности этой информации. Пользователь должен быть уверен, что получает доступ к информации из заслуживающего доверия источника и что данная информация не была изменена без соответствующих санкций. Поиск совпадения "один к одному" (по одному атрибуту) обычно называют верификацией. Она отличается высокой скоростью и предъявляет минимальные требования к вычислительной мощности компьютера. Поиск же "один ко многим" называется идентификацией.

Биометрические технологии аутентификации можно разделить на две большие категории - физиологические и психологические. К первой относятся методы, основанные на физиологической (статической) характеристике человека, т. е. неотъемлемой, уникальной характеристике, данной ему от рождения. Здесь анализируются такие признаки, как черты лица, структура глаза (сетчатки или радужной оболочки), параметры пальцев (папиллярные линии, рельеф, длина суставов и т. д.), ладонь (ее отпечаток или топография), форма руки, рисунок вен на запястье или тепловая картина.

К группе психологических относят так называемые динамические методы, которые основываются на поведенческой (динамической) характеристике человека. Иными словами, они используют особенности, характерные для подсознательных движений в процессе воспроизведения какого-либо действия. К таким характеристикам относятся голос человека, особенности его подписи, динамические параметры письма, особенности ввода текста с клавиатуры и т. д.

Любая биометрическая система позволяет распознавать некий шаблон и устанавливать аутентичность конкретных физиологических или поведенческих характеристик пользователя. Логически биометрическую систему (рис. 1) можно разделить на два модуля: регистрации и идентификации. Модуль регистрации отвечает за то, чтобы система научилась идентифицировать конкретного человека. На этапе регистрации биометрические датчики сканируют его необходимые физиологические или поведенческие характеристики, создавая их цифровое представление. Специальный модуль обрабатывает это представление с тем, чтобы выделить характерные особенности и сгенерировать более компактное и выразительное представление, называемое шаблоном. Для изображения лица такими характерными особенностями могут быть размер и относительное расположение глаз, носа и рта. Шаблон для каждого пользователя хранится в базе данных биометрической системы.

Модуль идентификации отвечает за распознавание человека. На этапе идентификации биометрический датчик регистрирует характеристики человека, идентификация которого проводится, и преобразует эти характеристики в тот же цифровой формат, в котором хранится шаблон. Полученный шаблон сравнивается с хранимым, с тем чтобы определить, соответствуют ли эти шаблоны друг другу. При использовании в процессе аутентификации технологии идентификации отпечатков пальцев имя пользователя вводится для регистрации, а отпечаток пальца заменяет пароль. Эта технология использует имя пользователя в качестве указателя для получения учетной записи пользователя и проверки соответствия "один к одному" между шаблоном считанного при регистрации отпечатка и сохраненным ранее шаблоном для данного имени пользователя. В другом случае введенный при регистрации шаблон отпечатка пальца сопоставляется со всем набором сохраненных шаблонов.

Бесперебойные источники биометрической информации

Осенью 2004 г. корпорация APC (http://www.apc.com) анонсировала биометрический менеджер паролей (Biometric Password Manager) - персональный сканер отпечатков пальцев, облегчающий пользователям ПК и ноутбуков управление личными паролями. Свой дебют в нетипичном для производителя ИБП сегменте в компании объясняли стремлением защищать данные на любом этапе их создания, передачи и хранения. Оно же послужило причиной выхода в свет таких продуктов APC, как сумка TravelPower Case и мобильный маршрутизатор для беспроводных сетей (Wireless Mobile Router).

Биометрическая новинка запоминает до 20 эталонов отпечатков пальцев, что позволяет хранить пароли 20 пользователей в одной компьютерной системе. Для идентификации пользователю достаточно приложить к устройству палец, при этом конструкция менеджера паролей обеспечивает точное сканирование отпечатка. Благодаря технологии AuthenTec TruePrint менеджер сканирует отпечатки пальцев, анализируя их истинную биологическую структуру под поверхностью кожи, вне зависимости от таких ее типичных дефектов, как сухость, потертость, мозолистость, загрязнение и жировые пленки.

В комплект поставки включен кабель USB и совместимое с ОС Windows 98/Me/2000/XP ПО, позволяющее хранить неограниченное число имен пользователей и паролей.

Статические методы

По отпечатку пальца

В основе этого метода лежит уникальность рисунка папиллярных узоров на пальцах у каждого человека (рис. 2). Отпечатки пальцев - наиболее точная, дружественная к пользователю и экономичная биометрическая характеристика из всех, используемых в компьютерных системах идентификации. Устраняя для пользователей потребность в паролях, технология распознавания отпечатков пальцев сокращает число обращений в службу поддержки и снижает расходы на сетевое администрирование.

Обычно системы для распознавания отпечатков пальцев делят на два типа: для идентификации, или AFIS (Automatic Fingerprint Identification Systems) и для верификации. В первом случае используются отпечатки всех десяти пальцев.

Преимущества доступа по отпечатку пальца - простота использования, удобство и надежность. Существуют два основополагающих алгоритма распознавания отпечатков пальцев: по отдельным деталям (характерным точкам) и по рельефу всей поверхности пальца. Соответственно в первом случае устройство регистрирует только некоторые участки, уникальные для конкретного отпечатка, и определяет их взаимное расположение. Во втором случае обрабатывается изображение всего отпечатка. В современных системах все чаще используется комбинация этих двух способов, что позволяет избежать недостатков обоих и повысить достоверность идентификации.

Единовременная регистрация отпечатка пальца человека на оптическом сканере занимает не слишком много времени. ПЗС-камера, выполненная в виде отдельного устройства или встроенная в клавиатуру, делает снимок отпечатка пальца. Затем с помощью специальных алгоритмов полученное изображение преобразуется в уникальный "шаблон" - карту микроточек этого отпечатка, которые определяются имеющимися в нем разрывами и пересечениями линий. Этот шаблон (а не сам отпечаток) затем шифруется и записывается в базу данных для аутентификации сетевых пользователей. В одном шаблоне хранится от нескольких десятков до сотен микроточек. При этом пользователи могут не беспокоиться о неприкосновенности своей частной жизни, поскольку сам отпечаток пальца не сохраняется и его нельзя воссоздать по микроточкам.

Преимущество ультразвукового сканирования - в возможности определить требуемые характеристики на грязных пальцах и даже через тонкие резиновые перчатки. Стоит отметить, что современные системы распознавания нельзя обмануть даже свежеотрубленными пальцами (микросхема измеряет физические параметры кожи).

Вероятность ошибки при идентификации пользователя намного меньше, чем у других биометрических методов. Качество распознавания отпечатка и возможность его правильной обработки алгоритмом сильно зависят от состояния поверхности пальца и его положения относительно сканирующего элемента. Разные системы предъявляют различные требования к этим двум параметрам. Характер требований, в частности, зависит от применяемого алгоритма.

По геометрии руки

В этой технологии оценивается несколько десятков различных характеристик, включая размеры самой ладони в трех измерениях, длину и ширину пальцев, очертания суставов и т. п. С помощью специального устройства (рис. 3), состоящего из камеры и нескольких подсвечивающих диодов (включаясь по очереди, они дают разные проекции ладони), строится трехмерный образ кисти руки. В плане надежности идентификация по геометрии кисти сравнима с идентификацией по отпечатку пальца, хотя устройство для считывания отпечатков ладоней занимает больше места.

Рис. 3. Идентификация по геометрии кисти.

По расположению вен на лицевой стороне ладони

С помощью инфракрасной камеры считывается рисунок вен на лицевой стороне ладони или кисти руки, полученная картинка обрабатывается и по схеме расположения вен формируется цифровая свертка.

По геометрии лица

Идентификация человека по лицу, без сомнения, - самый распространенный способ распознавания в обычной жизни. Но в плане технической реализации она представляет собой более сложную (с математической точки зрения) задачу, нежели распознавание отпечатков пальцев, и требует более дорогостоящей аппаратуры (цифровой видео- или фотокамеры и платы захвата видеоизображения). После получения изображения система анализирует параметры лица (например, расстояние между глазами и носом). У этого метода есть один существенный плюс: для хранения данных об одном образце идентификационного шаблона требуется совсем немного памяти. А все потому, что, как выяснилось, человеческое лицо можно "разобрать" на относительно небольшое количество участков, неизменных у всех людей. Например, для вычисления уникального шаблона, соответствующего конкретному человеку, требуется всего от 12 до 40 характерных участков.

При построении трехмерного образа лица человека на нем выделяются контуры бровей, глаз, носа, губ и т. д., вычисляется расстояние между ними и строится не просто образ, а еще и множество его вариантов на случаи поворота лица, наклона, изменения выражения. Число образов варьируется в зависимости от целей применения данного способа (для аутентификации, верификации, удаленного поиска на больших территориях и т. д.). Большинство алгоритмов позволяет компенсировать наличие у индивида очков, шляпы и бороды. Для этой цели обычно используется сканирование лица в инфракрасном диапазоне.

По радужной оболочке глаза

Довольно надежное распознавание обеспечивают системы, анализирующие рисунок радужной оболочки глаза человека. Дело в том, что эта часть человеческого организма весьма стабильна. Она практически не меняется в течение всей жизни, не зависит от одежды, загрязнений и ран. Заметим также, что оболочки правого и левого глаза по рисунку существенно различаются.

При распознавании по радужной оболочке различают активные и пассивные системы. В системах первого типа пользователь должен сам настроить камеру, передвигая ее для более точной наводки. Пассивные системы проще в использовании, поскольку камера в них настраивается автоматически. Высокая надежность этого оборудования позволяет применять его даже в исправительных учреждениях.

Преимущество сканеров для радужной оболочки состоит в том, что они не требуют от пользователя сосредоточиться на цели, потому что образец пятен на радужной оболочке находится на поверхности глаза. Фактически видеоизображение глаза можно отсканировать на расстоянии менее метра.

По сетчатке глаза

Метод идентификации по сетчатке глаза получил практическое применение сравнительно недавно - где-то в середине 50-х годов теперь уже прошлого века. Именно тогда было доказано, что даже у близнецов рисунок кровеносных сосудов сетчатки не совпадает. Для того, чтобы зарегистрироваться в специальном устройстве, достаточно посмотреть в глазок камеры менее минуты. За это время система успевает подсветить сетчатку и получить обратно отраженный сигнал. Для сканирования сетчатки используется инфракрасное излучение низкой интенсивности, направленное через зрачок к кровеносным сосудам на задней стенке глаза. Из полученного сигнала выделяется несколько сотен первоначальных характерных точек, информация о которых усредняется и сохраняется в кодированном файле.

К недостаткам подобных систем следует в первую очередь отнести психологический фактор: не всякому человеку приятно смотреть в неведомое темное отверстие, где что-то светит в глаз. К тому же смотреть надо очень аккуратно, так как подобные системы, как правило, чувствительны к неправильной ориентации сетчатки. Сканеры для сетчатки глаза получили большое распространение для доступа к сверхсекретным системам, поскольку гарантируют один из самых низких процентов отказа в доступе для зарегистрированных пользователей и почти нулевой процент ошибок.

По термограмме лица

В основе данного способа аутентификации лежит уникальность распределения на лице артерий, снабжающих кровью кожу, которые выделяют тепло. Для получения термограммы используются специальные камеры инфракрасного диапазона. В отличие от распознавания по геометрии лица, данный метод позволяет различать даже близнецов.

Динамические методы

По голосу

Это одна из старейших технологий, но в настоящее время ее развитие ускорилось, так как предполагается широко использовать ее в "интеллектуальных зданиях". Существует достаточно много способов построения кода идентификации по голосу; как правило, это различные сочетания частотных и статистических характеристик голоса. Здесь могут оцениваться такие параметры, как высота тона, модуляция, интонация и т. п. В отличие от распознавания внешности, данный метод не требует дорогостоящей аппаратуры - достаточно звуковой платы и микрофона.

Идентификация по голосу удобна, но в то же время не так надежна, как другие биометрические методы. Например, человек с простудой может столкнуться с трудностями при использовании таких систем. Голос формируется из комбинации физиологических и поведенческих факторов, поэтому основная проблема, связанная с этим биометрическим подходом, - это точность идентификации. В настоящее время идентификация по голосу используется для управления доступом в помещение средней степени безопасности.

По рукописному почерку

Как оказалось, подпись - это такой же уникальный атрибут человека, как и его физиологические характеристики. Кроме того, метод идентификации по подписи более привычен для любого человека, поскольку он, в отличие от снятия отпечатков пальцев, не ассоциируется с криминальной сферой.

Одна из перспективных технологий аутентификации основана на уникальности биометрических характеристик движения человеческой руки во время письма. Обычно выделяют два метода обработки данных о подписи: простого сравнения с образцом и динамической верификации. Первый из них очень ненадежен, так как основан на обычном сравнении введенной подписи с хранящимися в базе данных графическими образцами. Из-за того, что подпись не может быть всегда одинаковой, этот метод работает с большим процентом ошибок. Метод динамической верификации требует намного более сложных вычислений и позволяет в реальном времени фиксировать параметры процесса подписи, такие, как скорость движения руки на разных участках, сила давления и длительность различных этапов подписи. Это дает гарантии того, что подпись не сможет подделать даже опытный графолог, поскольку никто не в состоянии в точности скопировать поведение руки владельца подписи.

Пользователь, используя стандартный дигитайзер и ручку, имитирует свою обычную подпись, а система считывает параметры движения и сверяет их с теми, что были заранее введены в базу данных. При совпадении образа подписи с эталоном система прикрепляет к подписываемому документу информацию об имени пользователя, адрес его электронной почты, должность, текущее время и дату, параметры подписи, включающие несколько десятков характеристик динамики движения (направление, скорость, ускорение) и другие. Эти данные шифруются, затем для них вычисляется контрольная сумма, и все это шифруется еще раз, образуя так называемую биометрическую метку. Для настройки системы вновь зарегистрированный пользователь выполняет процедуру подписания документа от пяти до десяти раз, что позволяет получить усредненные показатели и доверительный интервал. Впервые данную технологию использовала компания PenOp.

Идентификацию по подписи нельзя использовать повсюду - в частности, этот метод проблематично применять для ограничения доступа в помещения или для доступа в компьютерные сети. Однако в некоторых областях, например, в банковской сфере, а также всюду, где происходит оформление важных документов, проверка правильности подписи может стать самым эффективным, а главное, необременительным и незаметным способом.

По клавиатурному почерку

Метод в целом аналогичен вышеописанному, но вместо росписи в нем используется некое кодовое слово (если используется личный пароль пользователя, такую аутентификацию называют двухфакторной), и не требуется никакого специального оборудования, кроме стандартной клавиатуры. В качестве основной характеристики, по которой строится свертка для идентификации, выступает динамика набора кодового слова.

Сравнение методов

Для сравнения различных методов и способов биометрической идентификации используются статистические показатели - вероятность ошибки первого рода (не пустить в систему "своего") и ошибки второго рода (пустить в систему "чужого"). Сортировать и сравнивать описанные выше биометрические методы по показаниям ошибок первого рода очень сложно, так как они сильно разнятся для одних и тех же методов по причине сильной зависимости от оборудования, на котором они реализованы. Тем не менее наметились два лидера - аутентификация по отпечаткам пальцев и по радужной оболочке глаза.

Решения, использующие дактилоскопические методы

Как отмечают эксперты, к настоящему времени компьютерные дактилоскопические системы достигли такого совершенства, что позволяют правильно идентифицировать человека по его отпечаткам пальцев более чем в 99% случаев. Конкурс, проведенный Национальным институтом стандартов и технологий (NIST) министерства торговли США, выявил тройку призеров среди таких систем. Специалисты NIST провели всестороннее тестирование 34 представленных на рынке систем идентификации по отпечаткам пальцев, разработанных 18 различными компаниями. Финансировалось исследование министерством юстиции США в рамках программы интеграции систем идентификации по отпечаткам пальцев, используемых в ФБР и в министерстве внутренней безопасности США.

Для тестирования систем использовался набор из 48 105 комплектов отпечатков пальцев, принадлежащих 25 309 человекам. Наилучшие (и примерно одинаковые) результаты показали системы, выпускаемые японской компанией NEC, французской Sagem и американской Cogent. Исследование показало, в частности, что процент ошибок для различных систем существенно зависит от того, сколько отпечатков пальцев берется у конкретного человека для идентификации. Рекордный результат составил 98,6% при идентификации по отпечатку одного пальца, 99,6% - по двум и 99,9% - по четырем и более пальцам.

На рынке появляются все новые и новые системы, основанные на таком методе идентификации. Так, компания SecuGen (http://www.secugen.com), специализирующаяся на безопасности, предлагает оборудование и ПО, позволяющее применять дактилоскопическую идентификацию в сетях под управлением Windows. Пользователю достаточно приложить палец к сенсору, чтобы программа его опознала и определила уровень допуска. Сканирующий сенсор, используемый в системе, обходится разрешающей способностью в 500 dpi. В настоящее время система способна работать под управлением Windows NT/2000 и Windows Server 2003. Приятным нововведением, облегчающим авторизацию, стала возможность сопоставлять отпечаткам разных пальцев пользователя разные же регистрационные записи.

Выпускаются сегодня и клавиатуры, и мыши со встроенным сканером отпечатков пальцев (рис. 4). Так, корпорация Microsoft (http://www.microsoft.com) предлагает комплект Microsoft Optical Desktop with Fingerprint Reader (клавиатура плюс мышь со считывателем отпечатков пальцев). Клавиатура Optical Desktop with Fingerprint Feature USB имеет мультимедийные клавиши, пять программируемых кнопок и колесико Tilt Wheеl, которым можно прокручивать текст и по вертикали, и по горизонтали. Беспроводная мышь Wireless IntelliMouse Explorer поставляется вместе с отдельным USB-сканером Fingerprint Reader, отличается заметно увеличившимся временем работы и также оснащена колесиком Tilt Wheel.

Рис. 4. Мышь со сканером.

Однако тот факт, что Microsoft освоила выпуск мышей и клавиатур со встроенными сканерами отпечатков пальцев, пока не значит, что нельзя запустить Windows, не пройдя биометрическую идентификацию. В настоящее время корпорация просто следует общей тенденции. А дальше - как знать.

А вот в Casio Computer разработан прототип ЖК-дисплея со встроенным сканером отпечатков пальцев. Устройство, имеющее диагональ 1,2 дюйма, предназначено для мобильных телефонов. Сканеры отпечатков пальцев, как правило, выполняются на ПЗС-матрицах, которые захватывают изображение, или на базе массива конденсаторных датчиков, емкость которых изменяется в соответствии с характером рисунка. В конструкции же дисплея Casio используется слой оптических датчиков на прозрачной подложке толщиной 0,7 мм, которая, в свою очередь, размещается поверх обычного ЖК-экрана. Как объясняют в Casio, ПЗС-датчики плохо считывают отпечатки с испачканных пальцев, а конденсаторные - если кожа слишком сухая. По утверждению представителей компании, ее оптические датчики указанных недостатков лишены.

Телефон с "отпечатком"

Первой, кто решился встроить в мобильный телефон систему распознавания отпечатков пальцев, стала корейская компания Pantech (http://www.pantech.com). В начале осени прошлого года она вышла на рынок с моделью GI100. До красот цветного дисплея, фотокамеры, игр и иных функций меню смогут добраться лишь зарегистрированные пользователи (оставившие в памяти телефона свои отпечатки). Прикоснувшись к сенсору, владелец может разблокировать клавиатуру и получить доступ ко всем разделам меню. Функция Secret Finger Dial реализует быстрый дозвон по 10 "секретным" телефонным номерам, причем каждому из них можно сопоставить отдельный отпечаток пальца левой или правой руки.

На "биометрическом фронте" активно работают и отечественные компании. Одно из основных направлений деятельности компании "ЦентрИнвест Софт" (http://www.centreinvest.com) - "биометрия для бизнеса" (bio2b). Отметим, что компания имеет лицензии Гостехкомиссии РФ и ФАПСИ на выполнение работ в области защиты информации и использование средств криптографической защиты, а также лицензию ФСБ на право работы с документами, содержащими сведения, составляющие государственную тайну. Биометрические решения "ЦентрИнвест Софт" можно подразделить по назначению на две большие группы: биометрическая защита информационных ресурсов и биометрическая идентификация при ограничении физического доступа. Для защиты информационных ресурсов компания предлагает как собственные разработки, так и продукты других (российских и зарубежных) компаний.

Так, программно-аппаратное решение bio2b BioTime предназначено для создания системы контроля и учета реального рабочего времени персонала. Оно также поставляет руководству оперативную информацию об отсутствующих сотрудниках. Решение состоит из программно-аппаратного комплекса BioTime (оборудование для биометрической аутентификации, сервер хранения учетных записей и базы данных событий, ПО для регистрации прихода/ухода сотрудников, автоматического создания отчетов и их рассылки) и набора услуг (поставка и настройка оборудования и ПО, сопровождение системы, обучение пользователей и системных администраторов).

BioTime работает следующим образом. На контрольном пункте устанавливается ПК с биометрическим сканером и клиентским ПО. Приходя на работу, сотрудник прикладывает палец к окошку сканера биометрической аутентификации. Система опознает работника в соответствии с его учетной записью в базе данных и регистрирует событие. По окончании рабочего дня выполняется аналогичная процедура. Процесс сканирования и распознавания занимает 1-2 с. Помимо ПК на местах аутентификации, сервера базы данных и ПО BioTime, в состав комплекса входят биометрические сканеры отпечатков пальцев U-Match Book или U-Match Mouse компании BioLink Technologies (http://www.biolink.ru), сертифицированные Гостехкомиссией и Госстандартом РФ. Заметим, что данные устройства обладают функциями защиты от муляжей и "мертвых" пальцев.

Другое решение, bio2b BioVault, представляет собой программно-аппаратный комплекс для защиты конфиденциальной информации, хранящейся на ПК, от несанкционированного доступа (использования, искажения, хищения). Он сочетает в себе технологии биометрической аутентификации пользователей по отпечаткам пальцев и программные средства шифрования информации. В комплекс входят сканеры отпечатков пальцев BioLink U-Match Book или BioLink U-Match Mouse, клиентское ПО BioLink Authentication Center для аутентификации пользователей при входе в сеть Microsoft Windows (поддерживаются домены Windows NT/2000, Active Directory) и Novell NetWare, а также система шифрования конфиденциальной информации BioVault компании SecurIT (http://www.securit.ru). Последняя позволяет создавать и использовать защищенные логические диски, представляющие собой специальные файлы-контейнеры на жестком, съемном или сетевом диске, где информация хранится в зашифрованном виде и недоступна для посторонних даже при изъятии диска или компьютера.

Не остаются в стороне от биометрии и гранды компьютерной индустрии. Начиная с 1999 г., когда IBM (http://www.ibm.com) анонсировала первый в отрасли ПК со встроенной подсистемой безопасности, корпорация фактически устанавливает стандарты безопасности для других производителей ПК. Будучи основателем организации Trusted Computing Group (http://www.trustedcomputinggroup.org), занимающейся разработкой отраслевых стандартов безопасности, IBM уделяет особое внимание созданию новаторских и самых защищенных ПК в отрасли. В октябре прошлого года корпорация представила первый ноутбук ThinkPad T42 со встроенным сканером отпечатков пальцев. Теперь в это семейство входит модель, которая не только упрощает доступ к закрытым ресурсам (например, к личной и финансовой информации, Web-сайтам, документам и электронной почте), но и обеспечивает высокий уровень защиты данных с помощью новых средств биометрического контроля и встроенной подсистемы безопасности.

В первых "биометрических" ноутбуках IBM ThinkPad сканер отпечатков пальцев работает совместно с подсистемой безопасности Embedded Security Subsystem, образуя дополнительный рубеж защиты, органично встроенный в систему. Сканер отпечатков пальцев расположен на подставке под запястья, под курсорным блоком (рис. 5). Для входа в систему, вызова приложений, доступа к Web-сайтам или к базам данных пользователю достаточно провести пальцем по небольшому горизонтальному датчику. Процесс сканирования занимает всего несколько секунд; таким образом, удобство применения сочетается с максимальным уровнем защиты, доступным в стандартных ноутбуках. Сканер отпечатков в ThinkPad фиксирует больше данных, чем традиционные датчики изображений, поскольку он сканирует большую площадь поверхности пальца, исключая тем самым ошибки при идентификации.

IBM также усовершенствовала свою аппаратно-программную систему Embedded Security Subsystem, выпустив обновленную версию ПО Client Security Software Version 5.4 с дополнительным компонентом защиты Secure Password Manager. В новой версии упрощены процессы установки и применения, кроме того, это ПО впервые поставляется в предустановленном виде. Новая версия поддерживает идентификацию по отпечаткам пальцев и по сложным паролям, причем оба метода идентификации могут использоваться и совместно, и как альтернатива друг другу. Новое ПО и встроенная микросхема защиты интегрированы со сканером отпечатков пальцев, что обеспечивает защиту важнейшей информации (в том числе ключей шифрования, электронных реквизитов и паролей) и предотвращает несанкционированное использование ноутбука.

Отметим, что система безопасности Embedded Security Subsystem - это один из ключевых компонентов набора технологий IBM ThinkVantage, который упрощает развертывание, подключение, защиту и поддержку ноутбуков ThinkPad и настольных ПК ThinkCentre. В свою очередь, сканер отпечатков пальцев - лишь один из компонентов целого комплекса средств безопасности IBM. В этот комплекс входят серверы, ОС, средства идентификации, связующее ПО, Интернет-конфиденциальность, сетевой доступ, информационные хранилища, средства системного управления, а также консалтинговые решения. Комплекс защищает информацию от угроз со стороны хакеров, вирусов и червей, от электронного спама, от проблем, связанных с использованием новых беспроводных технологий, а также обеспечивает соответствие требованиям правительственных нормативных актов по информационной безопасности.

IBM также стала авторизованным реселлером ПО компании Utimaco (http://www.utimaco.com), которое обеспечивает полное шифрование всего содержимого жесткого диска. Эта функция защищает ноутбук от несанкционированного использования в случае его кражи или утери. Utimaco Safeguard Easy - это первый продукт для полного шифрования дисков, полностью совместимый с технологией IBM Rescue and Recovery из набора ThinkVantage, которая в автоматическом режиме обеспечивает резервное копирование/восстановление содержимого всего жесткого диска, гарантируя защиту от потери данных в случае отказа ОС. По имеющейся информации, в 2005 г. корпорация расширит использование биометрических решений безопасности, о которых было объявлено ранее, оснастив встроенными сканерами отпечатка пальца другие модели ноутбуков ThinkPad и предложив новые средства сканирования отпечатка пальца для настольных ПК ThinkCentre и ноутбуков ThinkPad.

Программно-техническая и физическая защита от несанкционированных воздействий

Технические средства защиты

Электронная подпись

Цифровая подпись представляет последовательность символов. Она зависит от самого сообщения и от секретного ключа, известного только подписывающему это сообщение.

Первый отечественный стандарт ЭЦП появился в 1994 году. Вопросами использования ЭЦП в России занимается Федеральное агентство по информационным технологиям (ФАИТ).

Внедрением в жизнь всех необходимых мероприятий по защите людей, помещений и данных занимаются высококвалифицированные специалисты. Они составляют основу соответствующих подразделений, являются заместителями руководителей организаций и т.п.

Существуют и технические средства защиты.

Технические средства защиты используются в различных ситуациях, входят в состав физических средств защиты и программно-технических систем, комплексов и устройств доступа, видеонаблюдения, сигнализации и других видов защиты.

В простейших ситуациях для защиты персональных компьютеров от несанкционированного запуска и использования имеющихся на них данных предлагается устанавливать устройства, ограничивающие доступ к ним, а также работать со съёмными жёсткими магнитными и магнитооптическими дисками, самозагружающимися компакт дисками, флеш-памятью и др.

Для охраны объектов с целью защиты людей, зданий, помещений, материально-технических средств и информации от несанкционированных воздействий на них, широко используют системы и меры активной безопасности. Общепринято для охраны объектов применять системы управления доступом (СУД). Подобные системы обычно представляют собой автоматизированные системы и комплексы, формируемые на основе программно-технических средств.

В большинстве случаев для защиты информации, ограничения несанкционированного доступа к ней, в здания, помещения и к другим объектам приходится одновременно использовать программные и технические средства, системы и устройства.

Антивирусные программно-технические средства

В качестве технического средства защиты применяют различные электронные ключи, например, HASP (Hardware Against Software Piracy), представляющие аппаратно-программную систему защиты программ и данных от нелегального использования и пиратского тиражирования (Рис. 5.1). Электронные ключи Hardlock используются для защиты программ и файлов данных. В состав системы входит собственно Hardlock, крипто-карта для программирования ключей и программное обеспечение для создания защиты приложений и связанных с ними файлов данных.

К основным программно-техническим мерам , применение которых позволяет решать проблемы обеспечения безопасности ИР , относятся:



● аутентификация пользователя и установление его идентичности;

● управление доступом к БД;

● поддержание целостности данных;

● защита коммуникаций между клиентом и сервером;

● отражение угроз, специфичных для СУБД и др.

Поддержание целостности данных подразумевает наличие не только программно-аппаратных средств поддержки их в рабочем состоянии, но и мероприятия по защите и архивированию ИР, дублированию их и т.п. Наибольшую опасность для информационных ресурсов, особенно организаций, представляет несанкционированное воздействие на структурированные данные – БД. В целях защиты информации в БД важнейшими являются следующие аспекты информационной безопасности (европейские критерии):

● условия доступа (возможность получить некоторую требуемую информационную услугу);

● целостность (непротиворечивость информации, её защищённость от разрушения и несанкционированного изменения);

● конфиденциальность (защита от несанкционированного прочтения).

Под доступностью понимают обеспечение возможности доступа авторизованных в системе пользователей к информации в соответствии с принятой технологией.

Конфиденциальность – обеспечение пользователям доступа только к данным, для которых они имеют разрешение на доступ (синонимы – секретность, защищённость).

Целостность – обеспечение защиты от преднамеренного или непреднамеренного изменения информации или процессов её обработки.

Эти аспекты являются основополагающими для любого программно-технического обеспечения, предназначенного для создания условий безопасного функционирования данных в компьютерах и компьютерных информационных сетях.

Контроль доступа – это процесс защиты данных и программ от их использования объектами, не имеющими на это права.

Управление доступом служит для контроля входа/выхода работников и посетителей организации через автоматические проходные (турникеты – Рис. 5.2, арочные металодетекторы – Рис. 5.3). Контроль их перемещения осуществляется с помощью систем видеонаблюдения. В управление доступом входят устройства и (или) системы ограждения для ограничения входа на территорию (охрана периметров). Используются также методы визуализации (предъявление вахтёру соответствующих документов) и автоматической идентификации входящих/выходящих работников и посетителей.

Арочные металодетекторы способствуют выявлению несанкционированного вноса/выноса металлизированных предметов и маркированных документов.

Автоматизированные системы управления доступом позволяют работникам и посетителям, пользуясь персональными или разовыми электронными пропусками, проходить через проходную здания организации, заходить в разрешённые помещения и подразделения. Они используют контактный или бесконтактный способ идентификации.

К мерам, обеспечивающим сохранность традиционных и нетрадиционных носителей информации и, как следствие, самой информации относят технологии штрихового кодирования . Эта известная технология широко используется при маркировке различных товаров, в том числе документов, книг и журналов.

В организациях применяют удостоверения, пропуска, читательские билеты и т.п., в том числе в виде пластиковых карт (Рис. 5.4) или ламинированных карточек (Ламинирование - это плёночное покрытие документов, защищающее их от лёгких механических повреждений и загрязнения.), содержащих идентифицирующие пользователей штрих-коды.

Для проверки штрих-кодов используют сканирующие устройства считывания бар-кодов – сканеры. Они преобразуют считанное графическое изображение штрихов в цифровой код. Кроме удобства, штрих-коды обладают и отрицательными качествами: дороговизна используемой технологии, расходных материалов и специальных программно-технических средств; отсутствие механизмов полной защиты документов от стирания, пропажи и др.

За рубежом вместо штрих-кодов и магнитных полос используют радиоидентификаторы RFID (англ. “Radiofrequency Identification”).

С целью предоставления возможности людям проходить в соответствующие здания и помещения, а также пользоваться информацией применяют контактные и бесконтактные пластиковые и иные магнитные и электронные карты памяти, а также биометрические системы.

Первые в мире пластиковые карточки со встроенными в них микросхемами появились в 1976 году. Они представляют персональное средство аутентификации и хранения данных, аппаратно поддерживают работу с цифровыми технологиями, включая электронную цифровую подпись. Стандартно карта имеет размер 84х54 мм. В неё можно встроить магнитную полосу, микросхему (чип), штрих-код, голограмму, необходимые для автоматизации процессов идентификации пользователей и контроля их доступа на объекты.

Пластиковые карточки используются как бэйджи, пропуска (Рис. 5.4), удостоверения, клубные, банковские, дисконтные, телефонные карты, визитки, календари, сувенирные, презентационные карточки и др. На них можно нанести фотографию, текст, рисунок, фирменный знак (логотип), печать, штрих-код, схему (например, расположения организации), номер и другие данные.

Для работы с ними используют специальные устройства, позволяющие надёжно идентифицировать личность – считыватели смарткарт. Считыватели обеспечивают проверку идентификационного кода и передачу его в контроллер. Они могут фиксировать время прохода или открывания дверей и др.

В качестве идентификаторов широко используются малогабаритные пульты-ключи типа Touch Memory. Эти простейшие контактные устройства обладают высокой надёжностью.

Устройства Touch Memory – специальная малогабаритная (размером с батарейку в виде таблетки) электронная карта в корпусе из нержавеющей стали. Внутри неё расположена микросхема с электронной памятью для установления уникального номера длиной в 48 бит, а также хранения Ф.И.О. пользователя и другой дополнительной информации. Такую карту можно носить на брелке с ключами (рис. 5.5) или разместить на пластиковой карточке сотрудника. Подобные устройства используются в домофонах для осуществления беспрепятственного открытия двери подъезда или помещения. В качестве бесконтактных идентификаторов используют устройства “Proximity”.

Наиболее чётко обеспечивают защиту средства идентификации личности, использующие биометрические системы. Понятие “биометрия ” определяет раздел биологии, занимающийся количественными биологическими экспериментами с привлечением методов математической статистики. Это научное направление появилось в конце XIX века.

Биометрические системы позволяют идентифицировать человека по присущим ему специфическим признакам, то есть по его статическим (отпечаткам пальцев, роговице глаза, форме руки и лица, генетическому коду, запаху и др.) и динамическим (голосу, почерку, поведению и др.) характеристикам. Уникальные биологические, физиологические и поведенческие характеристики, индивидуальные для каждого человека. Они называются биологическим кодом человека .

Первые биометрические системы использовали рисунок (отпечаток) пальца. Примерно одну тысячу лет до н.э. в Китае и Вавилоне знали об уникальности отпечатков пальцев. Их ставили под юридическими документами. Однако дактилоскопию стали применять в Англии с 1897 года, а в США – с 1903 года. Пример современного считывающего отпечатки пальцев устройства представлен на рис. 5.6.

Преимущество биологических систем идентификации, по сравнению с традиционными (например, PIN-кодовыми, доступом по паролю), заключается в идентификации не внешних предметов, принадлежащих человеку, а самого человека. Анализируемые характеристики человека невозможно утерять, передать, забыть и крайне сложно подделать. Они практически не подвержены износу и не требуют замены или восстановления. Поэтому в различных странах (в том числе России) включают биометрические признаки в загранпаспорта и другие идентифицирующие личности документы.

С помощью биометрических систем осуществляются:

1) ограничение доступа к информации и обеспечение персональной ответственности за её сохранность;

2) обеспечение допуска сертифицированных специалистов;

3) предотвращение проникновения злоумышленников на охраняемые территории и в помещения вследствие подделки и (или) кражи документов (карт, паролей);

4) организация учёта доступа и посещаемости сотрудников, а также решается ряд других проблем.

Одним из наиболее надёжных способов считается идентификация глаз человека (Рис. 5.7): идентификация рисунка радужной оболочки глаза или сканирование глазного дна (сетчатки глаза). Это связано с отличным соотношением точности идентификации и простотой использования оборудования. Изображение радужной оболочки оцифровывается и сохраняется в системе в виде кода. Код, полученный в результате считывания биометрических параметров человека, сравнивается с зарегистрированным в системе. При их совпадении система снимает блокировку доступа. Время сканирования не превышает двух секунд.

К новым биометрическим технологиям следует отнести трёхмерную идентификацию личности , использующую трёхмерные сканеры идентификации личности с параллаксным методом регистрации образов объектов и телевизионные системы регистрации изображений со сверхбольшим угловым полем зрения. Предполагается, что подобные системы будут использоваться для идентификации личностей, трёхмерные образы которых войдут в состав удостоверений личности и других документов.

Кражи идентификационных данных вызывают все большую обеспокоенность в обществе - по данным Федеральной комиссии по торговле США, жертвами хищения идентифицирующих сведений ежегодно становятся миллионы, а «кража личности» стала самой распространенной жалобой потребителей. В цифровую эпоху традиционных методов аутентификации - паролей и удостоверений личности - уже недостаточно для борьбы с хищением идентификационных сведений и обеспечения безопасности. «Суррогатные репрезентации» личности легко забыть где-либо, потерять, угадать, украсть или передать.

Биометрические системы распознают людей на основе их анатомических особенностей (отпечатков пальцев, образа лица, рисунка линий ладони, радужной оболочки, голоса) или поведенческих черт (подписи, походки). Поскольку эти черты физически связаны с пользователем, биометрическое распознавание надежно в роли механизма, следящего, чтобы только те, у кого есть необходимые полномочия, могли попасть в здание, получить доступ к компьютерной системе или пересечь границу государства. Биометрические системы также обладают уникальными преимуществами - они не позволяют отречься от совершенной транзакции и дают возможность определить, когда индивидуум пользуется несколькими удостоверениями (например, паспортами) на разные имена. Таким образом, при грамотной реализации в соответствующих приложениях биометрические системы обеспечивают высокий уровень защищенности.

Правоохранительные органы уже больше века в своих расследованиях пользуются биометрической аутентификацией по отпечаткам пальцев, а в последние десятилетия происходит быстрый рост внедрения систем биометрического распознавания в правительственных и коммерческих организациях во всем мире. На рис. 1 показаны некоторые примеры. Хотя многие из этих внедрений весьма успешны, существуют опасения по поводу незащищенности биометрических систем и потенциальных нарушений приватности из-за несанкционированной публикации хранимых биометрических данных пользователей. Как и любой другой аутентификационный механизм, биометрическую систему может обойти опытный мошенник, располагающий достаточным временем и ресурсами. Важно развеивать эти опасения, чтобы завоевать доверие общества к биометрическим технологиям.

Принцип действия биометрической системы

Биометрическая система на этапе регистрации записывает образец биометрической черты пользователя с помощью датчика - например, снимает лицо на камеру. Затем из биометрического образца извлекаются индивидуальные черты - например, минуции (мелкие подробности линий пальца) - с помощью программного алгоритма экстракции черт (feature extractor). Система сохраняет извлеченные черты в качестве шаблона в базе данных наряду с другими идентификаторами, такими как имя или идентификационный номер. Для аутентификации пользователь предъявляет датчику еще один биометрический образец. Черты, извлеченные из него, представляют собой запрос, который система сравнивает с шаблоном заявленной личности с помощью алгоритма сопоставления. Он возвращает рейтинг соответствия, отражающий степень схожести между шаблоном и запросом. Система принимает заявление, только если рейтинг соответствия превышает заранее заданный порог.

Уязвимости биометрических систем

Биометрическая система уязвима для двух видов ошибок (рис. 2). Когда система не распознает легитимного пользователя, происходит отказ в обслуживании, а когда самозванец неверно идентифицируется в качестве авторизованного пользователя, говорят о вторжении. Для таких сбоев существует масса возможных причин, их можно поделить на естественные ограничения и атаки злоумышленников.

Естественные ограничения

В отличие от систем аутентификации по паролю, которые требуют точного соответствия двух алфавитно-цифровых строк, биометрическая аутентификационная система полагается на степень схожести двух биометрических образцов, а поскольку индивидуальные биометрические образцы, полученные в ходе регистрации и аутентификации, редко идентичны, то, как показано на рис. 3, биометрическая система может делать ошибки аутентификации двух видов. Ложное несоответствие происходит, когда два образца от одного и того же индивидуума имеют низкую схожесть и система не может их сопоставить. Ложное соответствие происходит, когда два образца от разных индивидуумов имеют высокое подобие и система некорректно объявляет их совпадающими. Ложное несоответствие ведет к отказу в обслуживании легитимного пользователя, тогда как ложное соответствие может привести к вторжению самозванца. Поскольку ему не надо применять какие-то специальные меры для обмана системы, такое вторжение называют атакой нулевого усилия. Большая часть исследований в области биометрии за последние пятьдесят лет была сосредоточена на повышении точности аутентификации - на минимизации ложных несоответствий и соответствий.

Атаки злоумышленников

Биометрическая система также может дать сбой в результате злоумышленных манипуляций, которые могут проводиться через инсайдеров, например сисадминов, либо путем прямой атаки на системную инфраструктуру. Злоумышленник может обойти биометрическую систему, если вступит в сговор с инсайдерами (или принудит их), либо воспользуется их халатностью (например, невыходом из системы после завершения транзакции), либо выполнит мошеннические манипуляции с процедурами регистрации и обработки исключений, которые изначально были разработаны для помощи авторизованным пользователям. Внешние злоумышленники также могут вызвать сбой в биометрической системе посредством прямых атак на пользовательский интерфейс (датчик), модули экстракции черт или сопоставления либо на соединения между модулями или базу шаблонов.

Примеры атак, направленных на системные модули и их межсоединения: трояны, «человек посередине» и атаки воспроизведения. Поскольку большинство видов таких атак также применимы к системам аутентификации по паролю, существует ряд контрмер наподобие криптографии, отметок времени и взаимной аутентификации, которые позволяют предотвратить или минимизировать эффект таких вторжений.

Две серьезные уязвимости, которые заслуживают отдельного внимания в контексте биометрической аутентификации: атаки подделки на пользовательский интерфейс и утечка из базы шаблонов. Эти две атаки имеют серьезное негативное влияние на защищенность биометрической системы.

Атака подделки состоит в предоставлении поддельной биометрической черты, не полученной от живого человека: пластилиновый палец, снимок или маска лица, реальный отрезанный палец легитимного пользователя.

Фундаментальный принцип биометрической аутентификации состоит в том, что, хотя сами биометрические признаки не являются секретом (можно тайно получить фото лица человека или отпечаток его пальца с предмета или поверхности), система тем не менее защищена, так как признак физически привязан к живому пользователю. Успешные атаки подделки нарушают это базовое предположение, тем самым серьезно подрывая защищенность системы.

Исследователи предложили немало методов определения живого состояния. Например, путем верификации физиологических характеристик пальцев или наблюдения за непроизвольными факторами, такими как моргание, можно удостовериться в том, что биометрическая особенность, зарегистрированная датчиком, действительно принадлежит живому человеку.

Утечка из базы шаблонов - это ситуация, когда информация о шаблоне легитимного пользователя становится доступной злоумышленнику. При этом повышается опасность подделки, так как злоумышленнику становится проще восстановить биометрический рисунок путем простого обратного инжиниринга шаблона (рис. 4). В отличие от паролей и физических удостоверений личности, краденый шаблон нельзя просто заменить новым, так как биометрические признаки существуют в единственном экземпляре. Краденые биометрические шаблоны также можно использовать для посторонних целей - например, для тайной слежки за человеком в различных системах или для получения приватной информации о его здоровье.

Защищенность биометрического шаблона

Важнейший фактор минимизации рисков безопасности и нарушения приватности, связанных с биометрическими системами, - защита биометрических шаблонов, хранящихся в базе данных системы. Хотя эти риски можно до некоторой степени уменьшить за счет децентрализованного хранения шаблонов, например на смарткарте, которую носит с собой пользователь, подобные решения нецелесообразны в системах типа US-VISIT и Aadhaar, которым нужны средства дедупликации.

Сегодня существует немало методов защиты паролей (в их числе шифрование, хэширование и генерация ключей), однако базируются они на предположении, что пароли, которые пользователь вводит на этапе регистрации и аутентификации, идентичны.

Требования к защищенности шаблона

Основная трудность при разработке схем защиты биометрического шаблона состоит в том, чтобы достигнуть приемлемого компромисса между тремя требованиями.

Необратимость. Злоумышленнику должно быть затруднительно вычислительным путем восстановить биометрические черты из сохраненного шаблона либо создать физические подделки биометрического признака.

Различимость. Схема защиты шаблона не должна ухудшать точность аутентификации биометрической системой.

Отменяемость. Должна быть возможность из одних и тех же биометрических данных создать несколько защищенных шаблонов, которые нельзя будет связать с этими данными. Это свойство не только позволяет биометрической системе отзывать и выдавать новые биометрические шаблоны в случае компрометации базы данных, но и предотвращает перекрестное сопоставление между базами данных, за счет чего сохраняется приватность данных о пользователе.

Методы защиты шаблонов

Имеется два общих принципа защиты биометрических шаблонов: трансформация биометрических черт и биометрические криптосистемы.

В случае трансформации биометрических черт (рис. 5, а ) защищенный шаблон получен за счет применения необратимой функции трансформации к оригиналу шаблона. Такая трансформация обычно основана на индивидуальных характеристиках пользователя. В процессе аутентификации система применяет ту же функцию трансформации к запросу, и сопоставление происходит уже для трансформированного образца.

Биометрические криптосистемы (рис. 5, б ) хранят только часть информации, полученной из биометрического шаблона, - эта часть называется защищенным эскизом (secure sketch). Хотя его самого недостаточно для восстановления оригинального шаблона, он все же содержит необходимое количество данных для восстановления шаблона при наличии другого биометрического образца, похожего на полученный при регистрации.

Защищенный эскиз обычно получают путем связывания биометрического шаблона с криптографическим ключом, однако защищенный эскиз - это не то же самое, что биометрический шаблон, зашифрованный с помощью стандартных методов. При обычной криптографии зашифрованный шаблон и ключ расшифровки - это две разные единицы, и шаблон защищен, только если защищен и ключ. В защищенном шаблоне же инкапсулируются одновременно и биометрический шаблон, и криптографический ключ. Ни ключ, ни шаблон нельзя восстановить, имея только защищенный эскиз. Когда системе предоставляют биометрический запрос, достаточно похожий на шаблон, она может восстановить и оригинальный шаблон, и криптоключ с помощью стандартных методов распознавания ошибок.

Исследователи предложили два основных метода генерации защищенного эскиза: нечеткое обязательство (fuzzy commitment) и нечеткий сейф (fuzzy vault). Первый можно использовать для защиты биометрических шаблонов, представленных в виде двоичных строк фиксированной длины. Второй полезен для защиты шаблонов, представленных в виде наборов точек.

За и против

Трансформация биометрических черт и биометрические криптосистемы имеют свои «за» и «против».

Сопоставление в схеме с трансформацией черт часто происходит напрямую, и возможна даже разработка функций трансформации, не меняющих характеристик исходного пространства признаков. Однако бывает сложно создать удачную функцию трансформации, необратимую и терпимую к неизбежному изменению биометрических черт пользователя со временем.

Хотя для биометрических систем существуют методы генерации защищенного эскиза, основанные на принципах теории информации, трудность состоит в том, чтобы представить эти биометрические черты в стандартизованных форматах данных наподобие двоичных строк и наборов точек. Поэтому одна из актуальных тем исследований - разработка алгоритмов, преобразующих оригинальный биометрический шаблон в такие форматы без потерь значащей информации.

Методы fuzzy commitment и fuzzy vault имеют и другие ограничения, в том числе неспособность генерировать много несвязанных шаблонов из одного и того же набора биометрических данных. Один из возможных способов преодоления этой проблемы - применение функции трансформации черт к биометрическому шаблону до того, как она будет защищена с помощью биометрической криптосистемы. Биометрические криптосистемы, которые объединяют трансформацию с генерацией защищенного эскиза, называют гибридными.

Головоломка приватности

Нерасторжимая связь между пользователями и их биометрическими чертами порождает обоснованные опасения по поводу возможности раскрытия персональных данных. В частности, знание информации о хранимых в базе биометрических шаблонах можно использовать для компрометации приватных сведений о пользователе. Схемы защиты шаблонов до некоторой степени могут снизить эту угрозу, однако многие сложные вопросы приватности лежат за рамками биометрических технологий. Кто владеет данными - индивидуум или провайдеры сервиса? Сообразно ли применение биометрии потребностям в безопасности в каждом конкретном случае? Например, следует ли требовать отпечаток пальца при покупке гамбургера в фастфуде или при доступе к коммерческому Web-сайту? Каков оптимальный компромисс между безопасностью приложения и приватностью? Например, следует ли разрешать правительствам, предприятиям и другим лицам пользоваться камерами наблюдения в публичных местах, чтобы тайно следить за законной деятельностью пользователей?

На сегодня удачных практических решений для подобных вопросов нет.

Биометрическое распознавание обеспечивает более надежную аутентификацию пользователей, чем пароли и удостоверяющие личность документы, и является единственным способом обнаружения самозванцев. Хотя биометрические системы не являются абсолютно надежными, исследователи сделали значительные шаги вперед по пути идентификации уязвимостей и разработки мер противодействия им. Новые алгоритмы для защиты биометрических шаблонов частично устраняют опасения по поводу защищенности систем и приватности данных пользователя, но понадобятся дополнительные усовершенствования, прежде чем подобные методы будут готовы к применению в реальных условиях.

Анил Джейн ([email protected]) - профессор факультета компьютерных наук и инженерного проектирования Мичиганского университета, Картик Нандакумар ([email protected]) - научный сотрудник сингапурского Института инфокоммуникационных исследований.

Anil K. Jain, Kathik Nandakumar, Biometric Authentication: System Security and User Privacy. IEEE Computer, November 2012, IEEE Computer Society. All rights reserved. Reprinted with permission.