Микроконтроллеры MCS–51: программная модель, структура, команды. Микроконтроллеры семейства mcs51 Микроконтроллеры семейства intel 8051 программная модель

УДК 681.5, 681.325.5 (075.8)

ББК 32.973.202-018.2 я 73

Щербина А. Н. Вычислительные машины, системы и сети. Микроконтроллеры и микропроцессоры в системах управления: у чеб. пособие / А.Н. Щербина, П.А. Нечаев- СПб.: Из-во Политехн. ун-та, 2012.-226 с.

Соответствует содержанию государственного образовательного стандарта направлений подготовки и специальностей в области управления в технических системах, электроэнергетики и электротехники и содержанию примерной учебной программы дисциплины «Вычислительные машины, системы и сети».

Рассмотрены фундаментальные вопросы логической организации микропроцессорных систем на примере базовой архитектуры микроконтроллерного семейства MCS-51 фирмы Intel. Описана технология программирования микроконтроллеров на языках Ассемблер и СИ.

Может быть полезным для студентов и преподавателей высших технических заведений, специалистов по автоматизации технологических процессов и производственного оборудования, а также для инженеров-проектировщиков микропроцессорных систем.

Также соответствует содержанию государственного образовательного стандарта дисциплин «Микроконтроллеры и микропроцессоры в системах управления» и «Электронные устройства автоматики» бакалаврской, инженерной и магистерской подготовки по направлению 140400 «Электроэнергетика и электротехника».

Печатается по решению редакционно-издательского совета

Санкт-Петербургского государственного политехнического университета.

© Щербина А. Н., Нечаев П. А., 2012

© Санкт-Петербургский государственный

политехнический университет, 2012

ISBN 978-5-7422-3553-8


Введение.. 7

Глава 1. Архитектура семейства MCS51. 10

1.1 Общие характеристики 10

1.2 Структурная схема 11



1.3 Назначение выводов микроконтроллера 8051 15

1.4 Организация памяти 17

1.4.1 Память программ (ПЗУ) 18

1.4.2 Память данных (ОЗУ) 19

1.4.3 Регистры специальных функций. 20

1.4.4 Регистр флагов (PSW) 23

1.5 Устройство управления и синхронизации 26

1.6 Организация портов ввода-вывода 27

1.6.1 Общие сведения. 27

1.6.2 Альтернативные функции. 27

1.7. Таймеры / счетчики микроконтроллеров семейства 8051. 28

1.7.1. Структура таймеров-счетчиков. 28

1.7.2 Режимы работы таймеров-счетчиков. 30

1.8. Последовательный порт 32

1.8.1. Структура последовательного порта. 32

1.8.2. Регистр управления/статуса приемопередатчика SCON.. 34

1.8.3. Регистр управления мощностью PCON.. 36

1.9. Система прерываний 37

1.9.1. Структура системы прерываний. 37

1.9.2 Выполнение подпрограммы прерывания. 40

Глава 2. Особенности микроконтроллера 80C51GB.. 42

2.1 Функциональные особенности 42

2.2 Порты I/O P0-P5 43

2.2.1 Функционирование портов ввода-вывода. 43

2.2.2 Запись в порт.. 46

2.3 Особенности системы прерываний 8XC51GB.. 49

Разрешение/запрещение прерываний. 50

Управление приоритетами прерываний. 51

Внешние прерывания. 54

2.3. Узел АЦП 56

2.4. Аппаратный сторожевой таймер 61

2.5. Обнаружение сбоя тактового генератора 63

2.6. Матрица программируемых счётчиков РСА 64

2.6.1. Структура PCA.. 64

2.6.2. Регистр режима счётчика РСА (CMOD) 66

2.6.3. Регистр управления счётчика РСА (CON) 67

2.6.4. Модули сравнения/фиксации. 68

2.7. Расширенный последовательный порт 76

2.8. Таймеры/счетчики 79

Расположение выводов микроконтроллеров группы 8XC51GB.. 86

Глава 3. Программирование MK 8051GB.. 89

3.1. Программная модель 89

3.2 Типы данных 93

3.3 Способы адресации данных 93

3.4 Система команд 95

3.4.1 Общая характеристика. 95

3.4.2 Типы команд. 96

3.4.3 Типы операндов. 97

3.4.4 Команды пересылки данных микроконтроллера. 98

3.4.5 Команды арифметических операций 8051. 101

3.4.6 Команды логических операций микроконтроллера 8051. 104

3.4.7 Команды операций над битами микроконтроллера 8051. 106

3.5 Отладка программ 111

Глава 4. Язык программирования ASM-51. 112

4.2 Запись текста программы 113

4.3 Алфавит языка. 114

4.4 Идентификаторы. 115

4.5 Числа 117

4.6 Директивы 118

4.7 Реализация подпрограмм на языке ASM51 122

4.7.1 Структура подпрограммы-процедуры на языке ASM51. 122

4.7.2 Передача переменных-параметров в подпрограмму. 123

4.7.3 Реализация подпрограмм-функций на языке ASM51. 123

4.7.4 Реализация подпрограмм обработки прерываний на языке ASM51. 124

4.8 Структурное программирование на языке ассемблера. 125

4.9 Особенности трансляции многомодульных программ.. 126

4.10 Использование сегментов 128

4.10.1 Разбиение памяти МК на сегменты.. 128

4.10.2 Абсолютные сегменты памяти. 129

4.10.2 Перемещаемые сегменты памяти. 131

Глава 5. Язык программирования С-51. 134

5.1 Общая характеристика языка 134

5.3 Структура программ С-51 136

5.3. Элементы языка программирования С-51 138

5.3.1. Символы.. 138

5.3.2. Лексические единицы, разделители и использование пробелов. 141

5.3.3 Идентификаторы.. 142

5.3.4 Ключевые слова. 143

5.3.5 Константы.. 143

5.4. Выражения в операторах языка 146

программирования C-51 146

5.5. Приоритеты выполнения операций 148

5.6. Операторы языка программирования C-51 149

5.6.1. Операторы объявления. 150

5.6.2 Исполняемые операторы.. 150

5.6.3 Оператор присваивания. 151

5.6.4 Условный оператор. 151

5.6.5 Структурный оператор {}. 152

5.6.6 Оператор цикла for. 152

5.6.7 Оператор цикла с проверкой условия до тела цикла while. 153

5.6.8 Оператор цикла с проверкой условия после тела цикла do while. 154

5.6.9 Оператор break. 155

5.6.10 Оператор continue. 155

5.6.11 Оператор выбора switch. 155

5.6.12 Оператор безусловного перехода goto. 157

5.6.13 Оператор выражение. 158

5.6.14 Оператор возврата из подпрограммы return. 158

5.6.15 Пустой оператор. 158

5.7. Объявление переменных в языке программирования C-51. 159

5.7.1. Объявление переменной. 159

5.7.3 Целые типы данных. 161

5.7.4 Числа с плавающей запятой. 162

5.7.5 Переменные перечислимого типа. 162

5.7.6. Объявление массивов в языке программирования C-51. 164

5.7.7. Структуры.. 165

5.7.8. Объединения (смеси) 166

5.8. Использование указателей в языке C-51 167

5.8.1. Объявление указателей. 167

5.8.2. Нетипизированные указатели. 168

5.8.3. Память зависимые указатели. 169

5.9. Объявление новых типов переменных 169

5.10. Инициализация данных 170

5.11. Использование подпрограмм в языке программирования С-51. 170

5.11.1. Определение подпрограмм.. 171

5.11.2. Параметры подпрограмм.. 173

5.11.3. Предварительное объявление подпрограмм.. 174

5.11.4 Вызов подпрограмм.. 176

5.11.5 Рекурсивный вызов подпрограмм.. 176

5.11.6 Подпрограммы обработки прерываний. 177

5.11.7 Области действия переменных и подпрограмм.. 178

5.12. Многомодульные программы 179

Глава 6. Подготовка программ в интегрированной среде разработки Keil μVision2. 182

6.1 Создание проекта на языке ASM-51 182

6.2 Пример создания проекта на языке C для учебного контроллера в интегрированной среде разработки Keil μVision2 188

Глава 7. Описание учебного контроллера.. 199

7.1. Структура контроллера 199

7.2. Адресное пространство 200

7.2.1. Распределение памяти. 200

7.2.2 Внешняя память. 201

7.2.3. Внутренняя память данных. 202

7.3. Распределение портов ввода-вывода 202

7.4. Последовательный порт………………………………...203

7.5. Работа с ЖКИ 205

7.6. Панели контроллера…………………………………………………213

ПРИЛОЖЕНИЕ П2 СТРУКТУРА ОТЧЁТА О ЛАБРОРАТОРНОЙ РАБОТЕ……..217

Приложение П3 Коды машинных команд. 217

Список литературы... 224


Введение

В освоении специальностей, связанных с автоматизацией технологических процессов и производств, изучение микроконтроллеров является одним из важных разделов.

В мире происходит непрерывное развитие и появление все новых и новых 16- и 32-разрядных микроконтроллеров и микропроцессоров, но наибольшая доля мирового микропроцессорного рынка и по сей день остается за 8-разрядными устройствами. По всем прогнозам аналитических компаний на ближайшее время, лидирующее положение 8-разрядных микроконтроллеров на мировом рынке сохранится.

В настоящее время среди всех 8-разрядных микроконтроллеров семейство MCS-51 является несомненным лидером по количеству разновидностей и количеству компаний, выпускающих его модификации. Оно получило свое название от первого представителя этого семейства - микроконтроллера 8051. Удачный набор периферийных устройств, возможность гибкого выбора внешней или внутренней программной памяти и приемлемая цена обеспечили этому микроконтроллеру успех на рынке.

Достоинства семейства MCS-51:

· архитектура, являющаяся стандартом де-факто;

· чрезвычайная широта семейства и разнообразие возможностей;

· наличие высокопроизводительных и расширенных версий процессоров;

· значительное число свободно доступных программных и аппаратурных наработок;

· легкость аппаратного программирования, в т. ч. и внутрисхемного;

· дешевизна и доступность базовых чипов;

· наличие специализированных версий контроллеров для особых условий применения

· наличие версий контроллеров с пониженным уровнем электромагнитных помех;

· широкая известность среди разработчиков старшего поколения, как в мире, так и в странах СНГ;

· поддержка архитектуры ведущими учебными заведениями мира.

И, наконец, главное преимущество: освоив базовый чип семейства, легко начнеть работать с такими вычислительными «монстрами», как микроконтроллеры Cygnal, Dallas Semiconductor, Analog Devices, Texas Instruments.

В состав семейства MCS-51 входит целый ряд микросхем от самых простых микроконтроллеров до достаточно сложных. На сегодняшний день существует более 200 модификаций микроконтроллеров семейства 8051, выпускаемых почти 20-ю компаниями. Каждый год появляются все новые варианты представителей этого семейства.

Основными направлениями развития являются:

· увеличение быстродействия (повышение тактовой частоты и переработка архитектуры);

· снижение напряжения питания и энергопотребления;

· увеличение объема ОЗУ и FLASH памяти на кристалле с возможностью внутрисхемного программирования;

· введение в состав периферии микроконтроллера сложных устройств типа системы управления приводами, CAN и USB интерфейсов и т.п.

Микроконтроллеры семейства MCS-51 позволяют выполнять как задачи управления различными устройствами, так и реализовывать отдельные узлы аналоговой схемы. Все микросхемы этого семейства работают с одной и той же системой команд. Большинство из них выполняется в одинаковых корпусах с совпадающей цоколевкой (нумерация ножек для корпуса). Это позволяет использовать для разработанного устройства микросхемы разных фирм - производителей без переделки принципиальной схемы устройства и программы.

Основными производителями разновидностей 51-го семейства в мире являются фирмы Philips, Siemens, Intel, Atmel, Dallas, Temic, Oki, AMD, MHS, Gold Star, Winbond, Silicon Systems и ряд других.

Характеристики аналогов микроконтроллеров семейства MCS-51 (Intel 8XC51FA, 8XC51GB, 80С152) с расширенными возможностями приведены в табл. В.1.

Таблица В.1

ОЗУ ПЗУ РСА АЦП WDT T/C Послед. Каналы Особенности
Atmel: AT89C2051
- - - - UART Flash 2 Кб
AT89C4051 - - - - UART Flash 4 Кб
AT89S4D12 128K - - - UART, SPI Flash 4 Кб
DALLAS Semiconductor: DS5000FP
- - - + UART Bootstrap loader
DS5001FP - - - + UART Bootstrap loader
DS8xC520 16K - - + 2xUART 2 DPTR
SIEMENS: C505C
16K - + + UART, CAN 8 DPTR
C515C 64K - + + UART+ SSC+CAN 4 ШИМ, 8 DPTR
Philips: *89C51RA+
- + - + UART 2 DPTR, 4 ур. прер., clock out, Flash 8K
P51XAG1x 8K - - + 2 UART
Intel: 8xC51RA
8K - + + UART 4 уровня IRQ, clock out
8XC196KC 64K 16K - + - UART 3 ШИМ
80C196KB 64K 8K - + - UART ШИМ

Глава 1. Архитектура семейства MCS51

8-разрядные однокристальные микроконтроллеры семейства MCS-51 приобрели большую популярность у разработчиков микропроцессорных систем контроля благодаря удачно спроектированной архитектуре. Архитектура микроконтроллера – это совокупность внутренних и внешних программно-доступных аппаратных ресурсов и системы команд. Архитектура семейства MCS-51 в значительной мере предопределяется ее назначением - построение компактных и дешевых цифровых устройств. Микроконтроллеры, выполняющие все функции микроЭВМ с помощью единственной микросхемы, получили название однокристальных ЭВМ (ОЭВМ).

Фирма Intel выпустила около 50 моделей на базе операционного ядра микроконтроллера Intel 8051. Одновременно многие другие фирмы, такие как Atmel, Philips, начали производство своих микроконтроллеров, разработанных в стандарте MCS-51.

Общие характеристики

Основные характеристики семейства:

· 8-разрядный центральный процессор (ЦП), ориентированный на управление исполнительными устройствами;

· ЦП имеет встроенную схему 8-разрядного аппаратного умножения и деления чисел;

· наличие в наборе команд большого количества операций для работы с прямоадресуемыми битами даёт возможность говорить о процессоре для работы с битовыми данными (булевом процессоре);

· внутренняя (расположенная на кристалле) память программ масочного или репрограммируемого типа, имеющая для различных кристаллов объём от 4 до 32 Кб, в некоторых версиях она отсутствует;

· не менее чем 128 байтное резидентное ОЗУ данных, которое используется для организации, регистровых банков, стека и хранения пользовательских данных;

· не менее 32-х двунаправленных интерфейсных линий (портов), индивидуально настраиваемых на ввод или вывод информации;

· два 16-битных многорежимных счетчика/таймера, используемых для подсчёта внешних событий, организации временных задержек и тактирования коммуникационного порта;

· двунаправленный дуплексный асинхронный приемопередатчик (UART), предназначенный для организации каналов связи между микроконтроллером и внешними устройствами с широким диапазоном скоростей передачи информации. Имеются средства для аппаратно-программного объединения микроконтроллеров в связанную систему;

· двухуровневая приоритетная система прерываний, поддерживающая не менее 5 векторов прерываний от 4-х внутренних и 2-х внешних источников событий;

· встроенный тактовый генератор.

Структурная схема

Структурная схема контроллера представлена на рис.1.1 и состоит из следующих основных функциональных узлов: блока управления, арифметико-логического устройства, блока таймеров/счетчиков, блока последовательного интерфейса и прерываний, программного счетчика, памяти данных и памяти программ. Двусторонний обмен осуществляется с помощью внутренней 8-разрядной магистрали данных. По такой схеме построены практически все представители семейства MCS-51. Различные микросхемы этого семейства различаются только регистрами специального назначения (в том числе и количеством портов).

Блок управления и синхронизации (Timing and Control) - предназначен для выработки синхронизирующих и управляющих сигналов, обеспечивающих координацию совместной работы блоков ОЭВМ во всех допустимых режимах ее работы. В состав блока управления входят:

устройство формирования временных интервалов;

логика ввода-вывода;

регистр команд;

регистр управления потреблением электроэнергии;

дешифратор команд, логика управления ЭВМ.

Рис. 1.1. Структурная схема контроллера I8051.

Устройство формирования временных интервалов предназначено для формирования и выдачи внутренних синхросигналов фаз, тактов и циклов. Количество машинных циклов определяет продолжительность выполнения команд. Практически все команды ОЭВМ выполняются за один или два машинных цикла, кроме команд умножения и деления, продолжительность выполнения которых составляет четыре машинных цикла. Обозначим частоту задающего генератора через F г. Длительность машинного цикла равна 12/F г или составляет 12 периодов сигнала задающего генератора. Логика ввода - вывода предназначена для приема и выдачи сигналов, обеспечивающих обмен информации с внешними устройствами через порты ввода вывода Р0-Р3.

Регистр команд предназначен для записи и хранения 8-ми разрядного кода операции выполняемой команды. Код операции, с помощью дешифратора команд и логики управления ЭВМ, преобразуется в микропрограмму выполнения команды.

Регистр управления потреблением (PCON) позволяет останавливать работу микроконтроллера для уменьшения потребления электроэнергии и уменьшения уровня помех от микроконтроллера. Еще большего уменьшения потребления электроэнергии и уменьшения помех можно добиться, остановив задающий генератор микроконтроллера. Этого можно достичь при помощи переключения бит регистра управления потреблением PCON. Для варианта изготовления по технологии n-МОП (серия 1816 или иностранных микросхем, в названии которых в середине отсутствует буква "c") регистр управления потреблением PCON содержит только один бит, управляющий скоростью передачи последовательного порта SMOD, а биты управления потреблением электроэнергией отсутствуют.

Арифметико-логическое устройство (ALU) представляет собой параллельное восьмиразрядное устройство, обеспечивающее выполнение арифметических и логических операций. АЛУ состоит из:

регистров аккумулятора, регистров временного хранения TMP1 и TMP2;

ПЗУ констант;

сумматора;

дополнительного регистра (регистра В);

аккумулятора (ACC);

регистра состояния программ (PSW).

Регистр аккумулятор и регистры временного хранения - восьмиразрядные регистры, предназначенные для приема и хранения операндов на время выполнения операций над ними. Эти регистры программно не доступны.

ПЗУ констант обеспечивает выработку корректирующего кода при двоично-десятичном представлении данных, кода маски при битовых операциях и кода констант.

Параллельный восьмиразрядный сумматор представляет собой схему комбинационного типа с последовательным переносом, предназначенную для выполнения арифметических операций сложения, вычитания и логических операций сложения, умножения, неравнозначности и тождественности.

Регистр B - восьмиразрядный регистр, используемый во время операций умножения и деления. Для других инструкций он может рассматриваться как дополнительный сверхоперативный регистр.

Аккумулятор - восьмиразрядный регистр, предназначенный для приема и хранения результата, полученного при выполнении арифметико-логических операций или операций сдвига

Блок последовательного интерфейса и прерываний (ПИП) предназначен для организации ввода - вывода последовательных потоков информации и организации системы прерывания программ. В состав блока входят:

буфер ПИП;

логика управления;

регистр управления;

буфер передатчика;

буфер приемника;

приемопередатчик последовательного порта;

регистр приоритетов прерываний;

регистр разрешения прерываний;

логика обработки флагов прерываний и схема выработки вектора.

Счетчик команд (Program Counter) предназначен для формирования текущего 16-разрядного адреса внутренней памяти программ и 8/16-разрядного адреса внешней памяти программ. В состав счетчика команд входят 16-разрядные буфер РС, регистр РС и схема инкремента (увеличения содержимого на 1).

Память данных (RAM) предназначена для временного хранения информации, используемой в процессе выполнения программы.

Порты P0, P1, P2, P3 являются квазидвунаправленными портами ввода - вывода и предназначены для обеспечения обмена информацией ОЭВМ с внешними устройствами, образуя 32 линии ввода- вывода.

Регистр состояния программы (PSW) предназначен для хранения информации о состоянии АЛУ при выполнении программы.

Память программ (EPROM) предназначена для хранения программ и представляет собой постоянное запоминающее устройство (ПЗУ). В разных микросхемах применяются масочные, стираемые ультрафиолетовым излучением или FLASH ПЗУ.

Регистр указателя данных (DPTR) предназначен для хранения 16 - разрядного адреса внешней памяти данных.

Указатель стека (SP) представляет собой восьмиразрядный регистр, предназначенный для организации особой области памяти данных (стека), в которой можно временно сохранить любую ячейку памяти.

1.3 Назначение выводов микроконтроллера 8051 (рис. 1.2)

· U ss - потенциал общего провода ("земли");

· U cc - основное напряжение питания +5 В;

· X1,X2 - выводы для подключения кварцевого резонатора;

· RST - вход общего сброса микроконтроллера;

· PSEN - разрешение внешней памяти программ, выдается только при обращении к внешнему ПЗУ;

· ALE - строб адреса внешней памяти;

· ЕА - отключение внутренней программной память; уровень 0 на этом входе заставляет микроконтроллер выполнять программу только из внешнего ПЗУ; игнорируя внутреннее(если последнее имеется);

Рис. 1.2. Назначение выводов 8051.

· P1 - восьмибитный квазидвунаправленный порт ввода/вывода, каждый разряд порта может быть запрограммирован как на ввод, так и на вывод информации, независимо от состояния других разрядов;

· P2 - восьмибитный квазидвунаправленный порт, аналогичный Р1, выводы этого порта используются для выдачи адресной информации при обращении к внешней памяти программ или данных (если используется 16-битовая адресация последней). Кроме того, выводы порта используются при программировании для ввода в микроконтроллер старших разрядов адреса;

· РЗ - восьмибитный квазидвунаправленный порт, аналогичный Р1, выводы этого порта могут выполнять ряд альтернативных функций, которые используются при работе таймеров, порта последовательного ввода-вывода, контроллера прерываний, и внешней памяти программ и данных;

· P0 - мультиплексируемый восьмибитный двунаправленный порт ввода-вывода информации, через этот порт в разные моменты времени выводятся младший байт адреса и данные.

Организация памяти

Вся серия MCS-51 имеет гарвардскую архитектуру, то есть раздельные адресные пространства памяти программ и данных. Структура памяти изображена на рис. 1.3.

Объем внутренней (резидентной) памяти программ (ROM, EPROM или OTP ROM), располагаемой на кристалле, в зависимости от типа микросхемы может составлять 0 (ROMless), 4К (базовый кристалл), 8К, 16К или 32К. При необходимости пользователь может расширять память программ установкой внешнего ПЗУ. Доступ к внутреннему или внешнему ПЗУ определяется значением сигнала на выводе ЕА (External Access):

EA=V cc (напряжение питания) - доступ к внутреннему ПЗУ;

EA=V ss (потенциал земли) - доступ к внешнему ПЗУ.

Для кристаллов без ПЗУ(ROMless) вывод ЕА должен быть постоянно подключен к V ss .

Рис. 1.3. Организация памяти семейства MCS-51

Строб чтения внешнего ПЗУ - (Program Store Enable) генерируется при обращении к внешней памяти программ и является неактивным во время обращения к ПЗУ, расположенному на кристалле. Область нижних адресов памяти программ используется системой прерываний. Архитектура базовой микросхемы 8051обеспечивает поддержку пяти источников прерываний:

· двух внешних прерываний;

· двух прерываний от таймеров;

· прерывания от последовательного порта.

На рис. 1.4 изображена карта нижней области программной памяти.

Рис. 1.4. Карта нижней области программной памяти

Память программ (ПЗУ)

У микроконтроллеров семейства 8051, память программ и память данных являются самостоятельными и независимыми друг от друга устройствами, адресуемыми различными командами и управляющими сигналами.

Объем встроенной памяти программ, расположенной на кристалле микроконтроллера 8051 , равен 4 Кбайт (в семействе до 32). При обращении к внешней памяти программ все микроконтроллеры семейства 8051 всегда используют 16-разрадный адрес, что обеспечивает им доступ к 64 Кбайт ПЗУ. Микроконтроллер обращается к программной памяти при чтении кода операции и операндов (используя счетчик команд PC), а также при выполнении команд копирования байта из памяти программ в аккумулятор. При выполнении команд копирования данных адресация ячейки памяти программ, из которой будут прочитаны данные, может осуществляться с использованием как счетчика PC, так и специального двухбайтового регистра-указателя данных DPTR.

Память данных (ОЗУ)

Объем расположенной на кристалле памяти данных - 128 байт. Объем внешней памяти данных может достигать 64 Кбайт. Первые 32 байта организованы в четыре банка регистров общего назначения, обозначаемых соответственно банк 0 - банк 3. Каждый из них состоит из восьми регистров R0–R7. В любой момент программе доступен, при регистровой адресации, только один банк регистров, номер которого содержится в третьем и четвертом битах слова состояния программы PSW .

Адреса битовой области памяти микроконтроллера 8051

Таблица 1.1

Адрес байта (Hex) Адреса битов по разрядам
D7 D6 D5 D4 D3 D2 D1 D0
2F 7F 7E 7D 7C 7B 7A
2E
2D 6F 6E 6D 6C 6B 6A
2C
2B 5F 5E 5D 5C 5B 5A
2A
4F 4E 4D 4C 4B 4A
3F 3E 3D 3C 3B 3A
2F 2E 2D 2C 2B 2A
1F 1E 1D 1C 1B 1A
0F 0E 0D 0C 0B 0A
20h

Оставшееся адресное пространство может конфигурироваться разработчиком по своему усмотрению: в нем можно разместить стек, системные и пользовательские области данных. Обращение к ячейкам памяти данных возможно двумя способами. Первый способ - прямая адресация ячейки памяти. В этом случае адрес ячейки является операндом соответствующей команды. Второй способ - косвенная адресация с помощью регистров-указателей R0 или R1: перед выполнением соответствующей команды в один из них должен быть занесен адрес ячейки, к которой необходимо обратиться.

Для обращения к внешней памяти данных используется только косвенная адресация с помощью регистров R0 и R1 или с помощью 16-разрядного регистра-указателя DPTR.

Часть памяти данных представляет собой битовую область, в ней имеется возможность при помощи специальных битовых команд адресоваться к каждому разряду ячеек памяти. Адрес прямо адресуемых битов может быть записан также в виде (АдресБайта).(Разряд). Соответствие этих двух способов адресации можно определить по табл. 1.1.

Базовая версия MCS–51 Краткие сведения. Современные 8–разрядные микроконтроллеры (МК) обла­дают такими ресурсами управления в режиме реального времени, для получения которых раньше использовались дорогие многокристальные компоновки в виде отдельных плат микроЭВМ, A именно:

● имеют достаточную емкость памяти, физическое и логическое ее разделение на память программ и память данных (гарвардскую архитектуру) и систему команд, ориентированную на выполнение алгоритмов управления;

● включают в себя все устройства (процессор, ПЗУ, ОЗУ, порты ввода–вывода, систему прерываний, средства обработки битовой информации и др.), необ­ходимые для реализации микропроцессорной системы управления мини­мальной конфигурации. В 70–е годы прошлого столетия фирмой Intel разработан и освоен промыш­ленный выпуск семейства 8–разрядных микроконтроллеров MCS–48, объединен­ных рядом общих признаков (разрядностью, системой команд, набором основных функциональных блоков и др.). Базовая версия этого семейства включает в себя:

● 8–разрядный процессор;

● внутреннюю память программ (1/2/4К байт);

● внутреннюю память данных (64/128/256 байт);

● до 27 внутренних и 16 внешних линий ввода–вывода;

● один 8–разрядный таймер–счетчик;

● одноуровневую систему прерываний с двумя источниками запросов. В 1980 г. той же фирмой было разработано новое семейство восьмиразрядных микроконтроллеров MCS–51, которое совместимо с архитектурой семейства MCS–48, но обладает более широкими возможностями.

Архитектура семейства MCS–51 оказалась настолько удачной, что и по настоящее время является одним из стандартов 8–разрядных МК. Поэтому объектом изучения выбраны МК этого семейства, получившие широкое распространение в сравнительно простых си­стемах управления.

Для семейства MCS–51 разработаны различные средства подготовки программ (компиляторы, аппаратно–программные эмуляторы и др.) и имеется большое число библиотек стандартных подпрограмм. В состав семей­ства входят разнообразные модификации микросхем (версии кристаллов) микро­контроллеров. В статьях этого раздела достаточно подробно рассматривается базовая версия микроконтроллеров семейства MCS–51 (микросхеме 8051 соответствует отече­ственный аналог КP1816ВЕ51), наиболее простая в структурно–функциональном плане и с точки зрения понимания.

Последующие серии микросхем, сохраняя со­вместимость с базовой версией, отличаются от нее улучшенной технологией из­готовления, электрическими параметрами, дополнительными аппаратными сред­ствами и функциональными возможностями. Структурно–функциональным осо­бенностям последующих модификаций микросхем семейства MCS–51 посвящены следующие статьи.
Обобщенная структурная схема MCS–51. В состав МК, обобщенная струк­турная схема которого приведена на рис. 7.1.1, входят:

● 8–разрядный центральный процессор ЦП, состоящий из АЛУ , устройства уп­равления УУ и формирователя адреса ФА ;

● масочное ПЗУ емкостью 4К байта для хранения программ;

● ОЗУ емкостью 128 байт для хранения данных;

● четыре программируемых порта Р0–Р3 для ввода–вывода информации;

● блок последовательного интерфейса БПИ для обмена информацией с внеш­ними устройствами по двухпроводной линии;

● блок таймеров/счетчиков БT/C для поддержания режима реального времени;

● блок прерываний БП для организации прерываний исполняемых программ. Эти средства образуют резидентную часть микроконтроллера, размещенную непосредственно на кристалле. В состав МК входит большое число регистров, которые отнесены к отдельным функциональным блокам и на схеме не показаны.

На схеме также не показаны цепи управления. Двусторонний обмен информацией между блоками осуществляется по внутренней 8–разрядной шине данных ШД–8.

По внутренней 16–разрядной шине адреса ША–16 сформированный в ЦП адрес выводится в ПЗУ (12 разрядов адреса) и в ОЗУ (8 младших разрядов).

При ис­пользовании внешней памяти в порт Р0 выводятся 8 младших разрядов адреса и в порт P2 - 3 или 8 старших разрядов.

Для логического расширения интерфейса исполь­зуется совмещение функций линий портов. В качестве примера на рис. 7.1.1 пунктиром показаны линии порта Р3, выполняющие аль­тернативные функции передачи управляющих сигналов, о назначении которых будет сказано ниже. Для создания внутреннего тактового ге­нератора к выводам микросхемы МК подклю­чаются кварцевый резонатор и два конденса­тора (рис. 7.1.1). Вместо внутреннего тактово­го генератора для синхронизации можно ис­пользовать внешний источник колебаний. Условное графическое обозначение мик­росхемы МК приведено на рис. 7.1.2, обозна­чение и назначение выводов - в табл. 7.1.1. Рассмотрим функциональные блоки МК и принцип их работы. Арифметическо–логическое устройство. Арифметическо–логическое уст­ройство предназначено для выполнения арифметических (включая умножение и деление) и логических операций над восьмиразрядными операндами, A также операций логического сдвига, обнуления, установки и др. Структурная схема АЛУ приведена на рис. 7.1.3.

В состав АЛУ входят

● параллельный восьмиразрядный сумматор SМ комбинационного типа с по­следовательным переносом, выполняющий арифметические (сложение и вы­читание) и логические (сложение, умножение, неравнозначность и тожде­ственность) операции;

аккумулятор A, обеспечивающий функции основного арифметического ре­гистра;

регистр В, используемый для реализации операций умножения и деления или как дополнительный сверхоперативный регистр, функции которого определя­ет пользователь;

регистры (программно недоступные) временного хранения РВХ1, РВХ2, предназначенные для приема и хранения операндов на время выполнения операции;

● ПЗУ констант ПЗУК, хранящее корректирующий код для двоично–десятичного представления данных, код маски при битовых операциях и код констант;

регистр слова состояния программы PSW, фиксирующий состояние АЛУ по­сле выполненной операции. В табл. 7.1.2 приведены сведения о назначении битов отдельных разрядов регистра PSW. Устройство управления. Устройство управления (УУ) центрального процес­сора предназначено для координации совместной работы всех узлов МК с по­мощью вырабатываемых синхроимпульсов и управляющих сигналов. В его состав входят (рис. 7.1.4):

узел синхронизации и управления УСУ, который формирует синхроимпульсы, задающие машинные циклы и их отдельные состояния (S) и фазы (Р), и в за­висимости от режима работы МК вырабатывает необходимый набор управля­ющих сигналов. На выполнение команды отводится один, два или четыре ма­шинных цикла.

Каждый машинный цикл имеет шесть состояний S1–S6, A каж­дое состояние включает в себя две фазы P1, P2, длительность которых составляет период колебаний тактового генератора T 0SC .

Длительность ма­шинного цикла равна 12T 0SC . Все машинные циклы одинаковые, начинаются с фазы S1P1 и заканчиваются фазой S6P2.

Помимо синхроимпульсов устрой­ство синхронизации в каждом машинном цикле формирует два (иногда один) сигнала стробирования младшего байта адреса ALE в виде положительного импульса в фазах S1P2–S2P1 и S4P2–S5P1. Временные диаграммы на рис. 7.1.5 иллюстрируют организацию машинных циклов;

● регистр команд РК, дешифратор команд ДК и ПЛМ, позволяющие в каждом машинном цикле сформировать набор микроопераций в соответствии с мик­ропрограммой выполняемой команды;

● логика ввода–вывода ЛВВ для приема и выдачи сигналов, обеспечивающих обмен информацией МК с внешними устройствами через порты Р0–Р3;

● регистр PCON, имеющий единственный задействованный бит SMOD в пози­ции PCON.7 для удвоения скорости передачи данных через последователь­ный порт. Остальные биты зарезервированы для дальнейшего использования.
Формирователь адреса. Формирователь адреса (ФА), или счетчик команд РС, предназначен для формирования текущего 16–разрядного адреса программной памяти и 8/16–разрядного адреса внешней памяти данных. В его состав входят (рис. 7.1.6):

● 16–разрядный буфер Б, осуществляющий связь между 8–разрядной шиной данных ШД и 16–разрядной внутренней шиной (ВШ) формирователя адреса;

● схема инкремента СИ для увеличения значения текущего адреса памяти программ на единицу;

● регистр для хранения текущего адреса команд РТА, поступающего из СИ;

● регистр указателя данных DPTR, состоящий из двух 8–разрядных регистров DPHи DPL. Он служит для хранения 16–разрядного адреса внешней памяти данных и может быть использован в качестве двух независимых программно доступных РОН;

● регистр формирователя адреса РФА для хранения исполнительного 16–раз­рядного адреса памяти программ или 8/16–разрядного адреса внешней памяти данных. Этот регистр используется также для передачи данных че­рез порт Р0 во внешние устройства при выполнении команд MOVX @Rm, A и MOVX @DPRT, A.

Память данных. Память данных предназначена для приема, хранения и выда­чи информации, используемой в процессе выполнения программы. Внутренняя (резидентная) память (рис. 7.1.7) данных состоит из ОЗУ ем­костью 128 байт, указателя стека SP, регистра адреса ОЗУ РА и дешифратора Дш. Указатель стека SP представляет собой 8–разрядный регистр, предназ­наченный для приема и хранения адре­са ячейки стека, к которой было после­днее обращение. После сброса в ука­зателе стека устанавливается адрес 07Н, что соответствует началу стека с адресом 08Н. Регистр адреса РА совместно с дешифратором Дш позволяет осуществить доступ к требуемой ячейке памяти, содержащей байт или бит информации.

В МК предусмотрена возможность увеличения объема памяти данных до 64 Кбайт путем подключения внешних запоминающих устройств. В качестве при­мера на рис. 7.1.8 показана страничная организация внешней памяти данных ВПД емкостью 2К байт с использованием команд типа MOVX @ Rm(m = 0; 1). При этом порт Р0 работает как мультиплексированная шина адрес/данные, три линии порта P2 используются для адресации страницы внешнего ОЗУ, A остальные пять линий могут быть задействованы в качестве линий ввода–вывода.
На рис. 7.1.9 приведены временные диаграммы циклов чтения и записи при работе МК с внешним ОЗУ. На диаграммах обозначено:

● РСН - старший байт счетчика команд PC;

● DPL, DPH - младший и старший байты регистра указателя данных DPTR, ко­торый используется в качестве регистра для косвенной адресации в коман­дах MOVX @DPTR,A и MOVX A,@DPTR;

● P2 SFR - защелки порта P2;

● Rm (m = 0, 1) - регистры, используемые в командах MOVX @Rm, A и MOVX A, @Rm в качестве регистров косвенного адреса;

● Z - высокоомное состояние;

● D - период, в течение которого данные из порта Р0 вводятся в микроконт­роллер. Память программ. Память программ предназначена для хранения программ, имеет свое (отдельно от памяти данных) адресное пространство и доступна толь­ко для чтения. В ее состав входит дешифратор Дш и ПЗУ (рис. 7.1.10). Для адресации памяти программ используется 16–разрядный счетчик РС, поэтому ее максимальная ем­кость составляет 64К байта. Внутренняя память про­грамм состоит из ПЗУ емкостью 4К байт и 12–разрядного дешифратора. Внешняя память подключается по схеме на рис. 7.1.11. Если на вывод ¯EA МК подается 0 В (как показано на рис. 7.1.11), внутренняя память программ отключается. Все обращения к памяти начинаются с адреса 0000h. При подключении вывода ¯ЕА к источнику питания обращение к внутренней памя­ти программ по адресам 0000h–FFFFh и к внешней памяти программ по адресам 0FFFh–FFFFhпроисходит автоматически.

Для чтения внешней памяти программ МК вырабатывается сигнал ¯PSEN. При работе с внутренней памятью сигнал чтения не ис­пользуется. При обращениях к внешней па­мяти программ всегда формируется 16–раз­рядный адрес. Младший байт адреса передается через порт Р0 в первой половине машинного цикла и фиксируется по срезу строба АLЕ в реги­стре Во второй половине цикла порт Р0 используется для ввода в МК байта данных из внешней памяти.

Старший байт адреса передается через порт P2 в течение всего времени обращения к памяти.

Временные диаграммы циклов чтения и записи при работе МК с внешним ОЗУ приведены на рис. 7.1.12.
На диаграммах обозначено:

● PCL OUT - выдача младшего байта счетчика команд PC;

● РСН OUT - выдача старшего байта счетчика команд PC;

● DPH - старший байт регистра указателя данных DPTR, который используется в качестве регистра для косвенной адресации в командах MOVX @DPTR,A и MOVX A,@DPTR;

● P2 SFR - защелки порта P2;

● INS IN - ввод байта инструкции (команды) из памяти программ;

● ADDR OUT - выдача младшего байта адреса внешней памяти данных из ре­гистров Rm (m = 0, 1) или из регистра DPL (младшего регистра DPTR). Порты ввода–вывода. Назначение портов. Порты Р0, P1, P2, Р3 пред­назначены для обмена информацией между МК и внешними устройствами, A так­же для выполнения следующих функций:

● через порт Р0 выводится младший байт адреса А7…A0; выводится из МК и вводится в МК байт данных при работе с внешней памятью программ и внеш­ней памятью данных (с разделением во времени);

● через порт P2 выводится старший байт адреса A15…А8 при работе с внеш­ней памятью программ и внешней памятью данных (только при использова­нии команд MOVX A,@DPTR и MOVX @DPTR,A);

● линии порта Р3 могут быть задействованы на выполнение альтернативных функций, если в фиксатор–защелку этой линии занесена 1, в противном слу­чае на выводе линии фиксируется 0. Альтернативные функции выводов порта P3 приведены в табл. 7.1.3.

Схемные особенности портов

На рис. 7.1.13 показаны схемы для од­ного канала каждого из портов МК, включающего в себя:

● защелку для фиксации принимаемого бита данных;

● выходной усилительный каскад (драйвер);

● узел связи с выходным каскадом (за исключением P2);

● цепь для передачи бита данных со стороны вывода порта, состоящую из бу­феров В2 и В3 (для порта Р4). Защелкой служит D–триггер, тактируемый внутренним сигналом «Запись в за­щелку». Бит данных с прямого выхода D–триггера может быть считан программно через буфер В1 сигналом «Чтение защелки» на линию внутренней шины данных (ШД) МК.

Выходной каскад порта Р0 представляет собой инвертор, особенности кото­рого проявляются в том, что нагрузочный транзистор VT2 открывается только при обращениях к внешней памяти (при передаче через порт адреса и данных). Во всех других режимах нагрузочный транзистор закрыт. Поэтому для использования Р0 (рис. 7.1.13, а) в качестве выходного порта общего назначения к его выводам необходимо подключить внешние нагрузочные резисторы. При записи 1 в защел­ку порта инверторный транзистор VT1 запирается и внешний вывод порта Р0.Х переводится в высокоомное состояние. В этом режиме вывод порта Р0.Х может служить входом. Если порт Р0 используется как порт ввода/вывода общего на­значения, каждый из его выводов Р0.Х может независимо от других работать как вход или как выход. Выходные каскады портов P1, P2, Р3 (рис. 7.1.13, б, в, г) выполнены по схемам инверторов с внутренним нагрузочным резистором, в качестве которого исполь­зован транзистор VT2.

Для уменьшения времени переключения при переходе выводов портов из состояния 0 в состояние 1 параллельно нагрузочному транзи­стору VT2 введен дополнительный транзистор VT3. Транзистор VT3 с помощью элементов в цепи затвора отпирается на время, равное двум периодам колеба­ний задающего кварцевого генератора (в течение фаз S1P1, S2P2 машинного цикла). Выходные каскады портов Р0, P2 (рис. 7.1.13, A, в) с помощью мультиплексора MX могут быть подключены либо к защелкам, либо к внутренним шинам «Адрес/ данные» и «Адрес». Выходной каскад порта P1 (рис. 7.1.13, 6) постоянно подклю­чен к защелке.

Если вывод порта Р3 является выходом и его защелка содержит 1, то его вы­ходным каскадом управляет аппаратно внутренний сигнал «Альтернативная функ­ция выхода», обеспечивающий выполнение соответствующей альтернативной функции, т.е. на внешнем выводе формируется один из сигналов ¯WR,¯RD или RxD. Если же вывод порта задействован на вход, то поступающий на него альтер­нативный сигнал (TxD, ¯INT0, ¯INT1, Т0, Т1) передается на внутреннюю линию «Аль­тернативная функция входа».

Режим записи в порт.

При выполнении команды записи в порт новое зна­чение записывается в защелку в фазе S6P2 и выводится непосредственно на вы­ходной контакт порта в фазе S1P1 следующего машинного цикла.

Режим чтения порта

Команды чтения портов считывают информацию не­посредственно с внешних контактов выводов порта или с выходов защелок. В первом случае бит данных с вывода порта считывается программно через буфер В2 сигналом «Чтение выводов» на линию внутренней шины данных (ШД) МК. Отметим, что сигналы «Запись в защелку», «Чтение защелки», «Чтение выво­дов» вырабатываются аппаратно при выполнении соответствующих команд.

Во втором случае реализуется так называемый режим «Чтение-Модифика­ция-Запись», в котором команда считывает сигнал состояния защелки, при не­обходимости модифицирует его и затем записывает обратно в защелку. Режим «Чтение-Модификация-Запись» реализуется при выполнении следующих команд: ANL, ORL, XRL, JBC; CPL; INC; DEC; DJNC; MOV PX,Y; CLR PX.Y; SETB PX,Y.

Чтение информации с выходов защелок позволяет исключить ошибки при интер­претации логического уровня на выводе порта. Продолжение статьи читайте во .

Архитектура семейства MCS-51 в значительной мере предопределяется ее назначением - построение компактных и дешевых цифровых устройств. Все функции микроЭВМ реализуются с помощью единственной микросхемы. В состав семейства MCS-51 входит целый ряд микросхем от самых простых микроконтроллеров до достаточно сложных. Микроконтроллеры семейства MCS-51 позволяют выполнять как задачи управления различными устройствами, так и реализовывать отдельные узлы аналоговой схемы. Все микросхемы этого семейства работают с одной и той же системой команд , большинство из них выполняется в одинаковых корпусах с совпадающей цоколевкой (нумерация ножек для корпуса). Это позволяет использовать для разработанного устройства микросхемы разных фирм — производителей (таких как Intel, Dallas, Atmel, Philips и т.д.) без переделки принципиальной схемы устройства и программы .

Рисунок 1. Структурная схема контроллера К1830ВЕ751

Структурная схема контроллера представлена на рисунке 1. и состоит из следующих основных функциональных узлов: блока управления, арифметико-логического устройства, блока таймеров/счетчиков, блока последовательного интерфейса и прерываний, программного счетчика, памяти данных и памяти программ. Двусторонний обмен осуществляется с помощью внутренней 8-разрядной магистрали данных. Рассмотрим подробнее назначение каждого блока. По такой схеме построены практически все представители семейства MCS-51 . Различные микросхемы этого семейства различаются только регистрами специального назначения (в том числе и количеством портов). Система команд всех контроллеров семейства MCS-51 содержит 111 базовых команд с форматом 1, 2 или 3 байта и не изменяется при переходе от одной микросхемы к другой. Это обеспечивает прекрасную переносимость программ с одной микросхемы на другую.

Блок управления и синхронизации

Блок управления и синхронизации (Timing and Control) предназначен для выработки синхронизирующих и управляющих сигналов, обеспечивающих координацию совместной работы блоков ОЭВМ во всех допустимых режимах ее работы.В состав блока управления входят:

  • устройство формирования временных интервалов,
  • логика ввода-вывода,
  • регистр команд,
  • регистр управления потреблением электроэнергии,
  • дешифратор команд, логика управления ЭВМ.

Устройство формирования временных интервалов предназначено для формирования и выдачи внутренних синхросигналов фаз, тактов и циклов. Количество машинных циклов определяет продолжительность выполнения команд. Практически все команды ОЭВМ выполняются за один или два машинных цикла, кроме команд умножения и деления, продолжительность выполнения которых составляет четыре машинных цикла. Обозначим частоту задающего генератора через F г. Тогда длительность машинного цикла равна 12/F г или составляет 12 периодов сигнала задающего генератора. Логика ввода - вывода предназначена для приема и выдачи сигналов, обеспечивающих обмен информации с внешними устройствами через порты ввода вывода Р0-Р3.

Регистр команд предназначен для записи и хранения 8-ми разрядного кода операции выполняемой команды. Код операции, с помощью команд и логики управления ЭВМ, преобразуется в микропрограмму выполнения команды.

Регистр управления потреблением (PCON ) позволяет останавливать работу микроконтроллера для уменьшения потребления электроэнергии и уменьшения уровня помех от микроконтроллера. Еще большего уменьшения потребления электроэнергии и уменьшения помех можно добиться, остановив задающий генератор микроконтроллера. Этого можно достичь при помощи переключения бит регистра управления потреблением PCON. Для варианта изготовления по технологии n-МОП (серия 1816 или иностранных микросхем, в названии которых в середине отсутствует буква "c") регистр управления потреблением PCON содержит только один бит, управляющий скоростью передачи последовательного порта SMOD, а биты управления потреблением электроэнергией отсутствуют.

Вместе со статьей "Архитектура микроконтроллеров MCS-51" читают:


http://сайт/MCS51/tablms.php


http://сайт/MCS51/SysInstr.php


http://сайт/MCS51/port.php

Архитектура семейства MCS-51 в значительной мере предопределяется ее назначением - построение компактных и дешевых цифровых устройств. Все функции микроЭВМ реализуются с помощью единственной микросхемы. В состав семейства MCS-51 входит целый ряд микросхем от самых простых микроконтроллеров до достаточно сложных. Микроконтроллеры семейства MCS-51 позволяют выполнять как задачи управления различными устройствами, так и реализовывать отдельные узлы аналоговой схемы. Все микросхемы этого семейства работают с одной и той же системой команд MCS-51 , большинство из них выполняется в одинаковых корпусах с совпадающей цоколевкой (нумерация ножек для корпуса). Это позволяет использовать для разработанного устройства микросхемы разных фирм - Maxim, Atmel, NXP и т.д. (catalog..php?page=components_list&id=39"> с.м. Поиск по параметрам) без переделки принципиальной схемы устройства и программы .

Рисунок 1. Структурная схема контроллера I8751

Структурная схема контроллера представлена на рисунке 1. и состоит из следующих основных функциональных узлов: блока управления, арифметико-логического устройства, блока таймеров/счетчиков, блока последовательного интерфейса и прерываний, программного счетчика, памяти данных и памяти программ. Двусторонний обмен осуществляется с помощью внутренней 8-разрядной магистрали данных.

Рассмотрим подробнее назначение каждого блока. По такой схеме построены практически все представители семейства MCS-51 . Различные микросхемы этого семейства различаются только регистрами специального назначения (в том числе и количеством портов). Система команд всех контроллеров семейства MCS-51 содержит 111 базовых команд с форматом 1, 2 или 3 байта и не изменяется при переходе от одной микросхемы к другой. Это обеспечивает прекрасную переносимость программ с одной микросхемы на другую.

Блок управления и синхронизации

Блок управления и синхронизации (Timing and Control) предназначен для выработки синхронизирующих и управляющих сигналов, обеспечивающих координацию совместной работы блоков ОЭВМ во всех допустимых режимах ее работы.В состав блока управления входят:

  • - устройство формирования временных интервалов,
  • - логика ввода-вывода,
  • - регистр команд,
  • - регистр управления потреблением электроэнергии,
  • - дешифратор команд, логика управления ЭВМ.

Устройство формирования временных интервалов предназначено для формирования и выдачи внутренних синхросигналов фаз, тактов и циклов. Количество машинных циклов определяет продолжительность выполнения команд. Практически все команды ОЭВМ выполняются за один или два машинных цикла, кроме команд умножения и деления, продолжительность выполнения которых составляет четыре машинных цикла. Обозначим частоту задающего генератора через F г. Тогда длительность машинного цикла равна 12/F г или составляет 12 периодов сигнала задающего генератора. Логика ввода - вывода предназначена для приема и выдачи сигналов, обеспечивающих обмен информации с внешними устройствами через порты ввода вывода Р0-Р3.

Регистр команд предназначен для записи и хранения 8-ми разрядного кода операции выполняемой команды. Код операции, с помощью дешифратора команд и логики управления ЭВМ, преобразуется в микропрограмму выполнения команды.

Регистр управления потреблением (PCON) позволяет останавливать работу микроконтроллера для уменьшения потребления электроэнергии и уменьшения уровня помех от микроконтроллера. Еще большего уменьшения потребления электроэнергии и уменьшения помех можно добиться, остановив задающий генератор микроконтроллера. Этого можно достичь при помощи переключения бит регистра управления потреблением PCON. Для варианта изготовления по технологии n-МОП (серия 1816 или иностранных микросхем, в названии которых в середине отсутствует буква "c") регистр управления потреблением PCON содержит только один бит, управляющий скоростью передачи последовательного порта SMOD, а биты управления потреблением электроэнергией отсутствуют.

Арифметико-логическое устройство (ALU) представляет собой параллельное восьмиразрядное устройство, обеспечивающее выполнение арифметических и логических операций. АЛУ состоит из:

  • - регистров аккумулятора, регистров временного хранения TMP1 и TMP2,
  • - ПЗУ констант,
  • - сумматора,
  • - дополнительного регистра (регистра В),
  • - аккумулятора (ACC),
  • - регистра состояния программ (PSW).

Регистр аккумулятор и регистры временного хранения - восьмиразрядные регистры, предназначенные для приема и хранения операндов на время выполнения операций над ними. Эти регистры программно не доступны.

ПЗУ констант обеспечивает выработку корректирующего кода при двоично-десятичном представлении данных, кода маски при битовых операциях и кода констант.

Параллельный восьмиразрядный сумматор представляет собой комбинационную схему с последовательным переносом, предназначенную для выполнения арифметических операций сложения, вычитания и логических операций сложения, умножения, неравнозначности и тождественности.

Регистр B - восьмиразрядный регистр, используемый во время операций умножения и деления. Для других инструкций он может рассматриваться как дополнительный сверхоперативный регистр.

Аккумулятор - восьмиразрядный регистр, предназначенный для приема и хранения результата, полученного при выполнении арифметико-логических операций или операций сдвига

Блок последовательного интерфейса и прерываний (ПИП) предназначен для организации ввода-вывода последовательных потоков информации и организации системы прерывания программ. В состав блока входят:

  1. - буфер ПИП,
  2. - логика управления,
  3. - регистр управления,
  4. - буфер передатчика,
  5. - буфер приемника,
  6. - приемопередатчик последовательного порта,
  7. - регистр приоритетов прерываний,
  8. - регистр разрешения прерываний,
  9. - логика обработки флагов прерываний и схема выработки вектора.

Счетчик команд (Program Counter) предназначен для формирования текущего 16-разрядного адреса внутренней памяти программ и 8/16-разрядного адреса внешней памяти программ. В состав счетчика команд входят 16-разрядные буфер РС, регистр РС и схема инкремента (увеличения содержимого на 1).

Память данных (RAM) предназначена для временного хранения информации, используемой в процессе выполнения программы.

Порты P0, P1, P2, P3 являются квазидвунаправленными портами ввода - вывода и предназначены для обеспечения обмена информацией ОЭВМ с внешними устройствами, образуя 32 линии ввода- вывода.

Устройство таймеров В базовых моделях семейства имеются два программируемых 16-битных таймера/счетчика (T/C0 и T/C1), которые могут быть использованы как в качестве таймеров, так и в качестве счетчиков внешних событий

Регистр состояния программы (PSW) предназначен для хранения информации о состоянии АЛУ при выполнении программы.

Память программ (EPROM) предназначена для хранения программ и представляет собой постоянное запоминающее устройство (ПЗУ). В разных микросхемах применяются масочные ПЗУ, стираемые ультрафиолетовым излучением или FLASH ПЗУ.

Регистр указателя данных (DPTR) предназначен для хранения 16-разрядного адреса внешней памяти данных или памяти программ.

Указатель стека (SP) представляет собой восьмиразрядный регистр, предназначенный для организации особой области памяти данных (стека), в которой можно временно сохранить любую чейку памяти.



Фирма Intel является родоначальницей архитектуры семейства MCS-51, которое получило свое название от первого представителя этого семейства - микроконтроллера 8051, выпущенного в 1980 году на базе технологии n-МОП. Удачный набор периферийных устройств, возможность гибкого выбора внешней или внутренней программной памяти и приемлемая цена обеспечили этому микроконтроллеру успех на рынке. С точки зрения технологии микроконтроллер 8051 являлся для своего времени очень сложным изделием - в кристалле было использовано 128 тыс. транзисторов, что в 4 раза превышало количество транзисторов в 16-разрядном микропроцессоре 8086. Указанный микроконтроллер остается ядром семейства MCS-51 и по сей день.

Основными элементами базовой архитектуры семейства (архитектуры микроконтроллера 8051) являются:

8-разрядное АЛУ;

4 банка регистров, по 8 в каждом;

Внутренняя (резидентная) память программ 4 Кбайт, имеющая тип ROM или EPROM (8751);

Внутренняя (резидентная) память данных 128 байт;

21 регистр специальных функций;

Булевый процессор;

Два 16-разрядных таймера/счетчика;

Контроллер последовательного порта (UART);

Контроллер обработки прерываний с двумя уровнями приоритетов;

Четыре 8-разрядных порта ввода/вывода, два из которых используются в качестве шины адреса/данных для доступа к внешней памяти программ и данных;

Встроенный тактовый генератор.

Затем был выпущен микроконтроллер 8052, который отличался увеличенным объемом резидентной памяти программ и данных, введенным третьим таймером и соответственно расширенным контроллером прерываний.

Следующим принципиальным шагом в развитии MCS-51 стал перевод технологии изготовления на КМОП (модификация 8xC51). Это позволило реализовать режимы Idl (холостой ход) и Power Down (пониженное потребление), обеспечивающие резкое снижение энергопотребления кристалла и открывшие дорогу к применению микроконтроллера в энергозависимых приложениях, например, в автономных приборах с батарейным питанием.

И последним важным этапом развития МК 8051 фирмой Intel стал выпуск микроконтроллеров 8xC51FA/FB/FC и 8xC51RA/RB/RC, которые для краткости часто обозначаются как 8xC51Fx и 8xC51Rx. Главной отличительной особенностью этой группы кристаллов является наличие у них специализированного таймера/счетчика (РСА). Кроме того, микроконтроллеры 8xC51Rx дополнительно содержат сторожевой таймер (WDT). Рассмотрим архитектуру и функциональные возможности PCA более подробно.

В состав РСА входят:

16-разрядный таймер/счетчик;

Пять 16-разрядных модуля выборки и сравнения, каждый из которых связан со своей линией порта ввода/вывода микроконтроллера.

Таймер/счетчик обслуживает все пять модулей выборки и сравнения, которые могут быть запрограммированы на выполнение одной из следующих функций:

16-битовая выборка значения таймера по положительному фронту внешнего сигнала;

16-битовая выборка значения таймера по отрицательному фронту внешнего сигнала;

16-битовая выборка значения таймера по любому фронту внешнего сигнала;

16-битовый программируемый таймер;

16-битовое устройство скоростного вывода;

8-битовый ШИМ.

Выполнение всех перечисленных функций происходит в РСА на аппаратном уровне и не загружает центральный процессор. Указанное позволяет повысить общую пропускную способность, повысить точность измерений и обработки сигналов и снизить время реакции микроконтроллера на внешние события, что особенно важно для систем реального времени. Реализованный в 8xC51Fx (8xC51Rx) РСА оказался настолько

Обозначение

Макс. частота (МГц)

ROM/EPROM (байт)

счетчики

удачным, что архитектура этих микроконтроллеров стала промышленным стандартом, а сам РСА многократно воспроизводился в различных модификациях МК 8051.

Некоторые характеристики ряда микроконтроллеров MCS-51, выпускаемых фирмой Intel, приведены в табл.1.1.

Изначально наиболее "узкими" местами архитектуры MCS-51 были 8-разрядное АЛУ на базе аккумулятора и относительно медленное выполнение команд (для выполнения самых быстрых команд требуется 12 пе-

Таблица 1.1

ввода/вывода

АЦП, входы x разряды

периферия,

особенности

U пит. (В)

Низковольтный вариант

4 уровня IRQ, clock out

4 уровня IRQ, clock out

Низковольтный вариант 8xC51Fx

4 уровня IRQ, clock out

4 уровня IRQ, clock out

4 уровня IRQ, clock out

риодов тактовой частоты (частоты синхронизации МК)). Это ограничивало применение микроконтроллеров семейства в приложениях, требующих повышенного быстродействия и сложных вычислений (16- и 32-битовых). Насущным стал вопрос принципиальной модернизации архитектуры MCS-51. Проблема модернизации осложнялась тем, что к началу 90-х годов уже была создана масса наработок в области программного и аппаратного обеспечения семейства MCS-51, в связи с чем одной из основных задач проектирования новой архитектуры была реализация аппаратной и программной совместимости с разработками на базе MCS-51.

Для решения указанной задачи была создана совместная группа из специалистов компаний Intel и Philips, но позднее пути этих двух фирм разошлись. В результате в 1995 году появилось два существенно отличающихся семейства: MCS-251/151 у Intel и MCS-51XA у Philips (см. подраздел 1.2).

Основные характеристики архитектуры MCS-251:

24-разрядное линейное адресное пространство, обеспечивающее адресацию до 16 Мбайт памяти;

Регистровая архитектура, допускающая обращение к регистрам как к байтам, словам и двойным словам;

Страничный режим адресации для ускорения выборки команд из внешней программной памяти;

Очередь инструкций;

Расширенный набор команд, включающий 16-битовые арифметические и логические операции;

Расширенное адресное пространство стека (до 64 Кбайт);

Выполнение самой быстрой команды за 2 такта.

Система команд MCS-251 включает два набора инструкций - первый набор является копией системы команд MCS-51, а второй состоит из расширенных инструкций, реализующих преимущества архитектуры MCS-251. Перед использованием микроконтроллера его необходимо сконфигурировать, т.е. с помощью программатора "прожечь" конфигурационные биты, определяющие, какой из наборов инструкций станет активным после включения питания. Если установить первый набор инструкций, то в этом случае МК семейства MCS-251 будет совместим с MCS-51 на уровне двоичного кода. Такой режим называется Binary Mode. Если же изначально установить набор расширенных инструкций (режим Source Mode), то тогда программы, написанные для MCS-51, потребуют перекомпиляции на кросс-средствах для MCS-251. Режим Source Mode позволяет с максимальной эффективностью использовать архитектуру MCS-251 и достигнуть наибольшего быстродействия.

Для пользователей, ориентированных на применение микроконтроллеров MCS-251 в качестве механической замены MCS-51, фирма Intel выпускает микроконтроллеры MCS-151, уже запрограммированные в состояние Binary Mode.

Некоторые характеристики ряда микроконтроллеров MCS-251/151 приведены в табл.1.1.

В настоящее время Intel, устремленная на рынок Pentium-процессоров, сворачивает производство кристаллов MCS-51. В целом для конкретного разработчика это может остаться и незамеченным, если только он не использует микроконтроллеры 8xC51GB и 80C152Jx, которые не имеют своих точных аналогов среди изделий других фирм. Что же касается всех остальных микроконтроллеров семейства MCS-51, то все они многократно растиражированы другими компаниями.