Сделаем зарядное устройство из блока питания компьютера. Переделка старого зарядника под микро USB Переделка телефонной зарядки на 12 вольт


Привет всем посетителям этого сайта! Наверно каждый дома имел или еще имеет зарядник для телефона без usb разъема на ней. Такие зарядники еще подключаются не используя никаких посторонних кабелей, а имеют свой провод и подключаются к телефону на прямую через свой разъем. Такие сейчас уже не часто встретишь, так как используются уже блоки питания для телефона со встроенным usb портом. У меня тоже есть такой блок питания от старого кнопочного телефона, который уже не работает. И этот блок питания я решил переделать на блок питания с usb разъемом. Эта переделка не займет много времени и не сложна в процессе. Для переделки блока питания на блок питания с usb портом мне понадобились:

Инструменты:
1) Острый канцелярский нож,
2) Молоток,
3) Ножницы,
4) Электрический паяльник,
5) Клеевой пистолет и термоклей,
6) Зажигалка,
7) Простой карандаш.

Материалы:
1) Сам блок питания 5 вольт от телефона,
2) Usb разъем,
3) Термоусадочные трубки,
4) Провода.

Процесс переделки обычного зарядника в usb зарядник.
Берем наш блок питания от телефона и ножницами или канцелярским ножом отрезаем от нее кабель.






Теперь надо открыть корпус блока питания. На моей не оказалось ни каких винтиков, шурупов, поэтому пришлось открывать корпус другими способами. Для этого берем молоток и легкими не сильными ударами ударяем по приклеенным швам блока питания. Сильно бить не надо, потому что может треснуть нам блок питания. Но после такого метода могут остаться маленькие вмятины на заряднике. Поэтому рекомендую делать этот процесс либо резиновым молотком, либо деревянным киянком.


Затем отпаиваем электрическим паяльником оставшиеся проводки от кабеля с платы.




Далее берем usb разъем и два коротеньких проводка (от самого кабеля блока питания).


Припаиваем с помощью электрического паяльника проводки к плате блока питания.




К этим проводкам, припаянным к блоку, припаиваем usb порт, при этом соблюдаем полярность, то есть плюс и минус. Для изоляции на кабель заранее уже надеваем термоусадочные трубки.






После пайки разъема к проводам, надеваем оголенные места термоусадкой и с помощью зажигалки разжимаем их с помощью горячего пламени.




Теперь чертим с помощью простого карандаша пометки на корпусе блока питания для будущего отверстия для usb разъема.


По линиям канцелярским ножом отрезаем углубление на корпусе блока питания для usb разъема.


С помощью клеевого пистолета и термоклея приклеиваем usb порт к корпусу зарядника.


Так же приклеиваем плату к корпусу, для того чтобы крепче держалось.

Источник питания - из зарядного устройства для сотового телефона
И. НЕЧАЕВ, г. Курск

Малогабаритная носимая аппаратура (радиоприемники, кассетные и дисковые плейеры) обычно рассчитаны на питание от двух-четырех гальванических элементов. Однако служат они недолго, и их приходится довольно часто заменять новыми, поэтому в домашних условиях такую аппаратуру целесообразно питать от сетевого блока. Такой источник (в просторечии его называют адаптером) нетрудно приобрести или изготовить самому, благо в радиолюбительской литературе их описано немало. Но можно поступить и иначе. Практически у трех из каждых четырех жителей нашей страны сегодня есть сотовый телефон (по данным исследовательской компании AC&M-Consulting, на конец октября 2005 г. число абонентов сотовой связи в РФ перевалило за 115 млн). Его зарядное устройство используется по прямому назначению (для зарядки аккумуляторной батареи телефона) всего лишь несколько часов в неделю, а остальное время бездействует. О том, как приспособить его для питания малогабаритной аппаратуры, рассказывается в статье.

Чтобы не тратиться на гальванические элементы, владельцы носимых радиоприемников, плейеров и т. п. аппаратуры используют аккумуляторы, а в стационарных условиях питают эти устройства от сети переменного тока. Если нет готового блока питания с нужным выходным напряжением, не обязательно покупать или собирать самому такой блок, можно использовать для этой цели зарядное устройство от сотового телефона, которое сегодня есть у многих.

Однако напрямую подключать его к радиоприемнику или плейеру нельзя. Дело в том, что большинство зарядных устройств, входящих в комплект сотового телефона, представляют собой неста-билизированный выпрямитель, выходное напряжение которого (4.5...7 В при токе нагрузки 0,1...О,ЗА) превышает требуемое для питания малогабаритного аппарата. Проблема решается просто. Чтобы использовать зарядное устройство в качестве блока питания, необходимо между ним и аппаратом включить переходник-стабилизатор напряжения.
Как говорит само название, основой такого устройства должен быть стабилизатор напряжения. Его удобнее всего собрать на специализированной микросхеме. Большая номенклатура и доступность интегральных стабилизаторов позволяют изготовить самые различные варианты переходников.
Принципиальная схема переходника-стабилизатора напряжения изображена на рис. 1. Микросхему DA1 выбирают

в зависимости от требуемого выходного напряжения и потребляемого нагрузкой тока. Емкость конденсаторов С1 и С2 может находиться в пределах 0,1...10мкФ (номинальное напряжение- 10 В).
Если нагрузка потребляет до 400 мА и такой ток способно отдать зарядное устройство, в качестве DA1 можно применить микросхемы КР142ЕН5А (выходное напряжение - 5 В), КР1158ЕНЗВ, КР1158ЕНЗГ (3,3 В), КР1158ЕН5В, КР1158ЕН5Г (5 В), а также пятивольтные импортные 7805, 78М05 . Подойдут также микросхемы серий LD1117ххх , REG 1117-хх . Их выходной ток - до 800 мА, выходное напряжение - из ряда 2,85; 3,3 и 5 В (у LD1117ххх - еще и 1,2; 1,8 и 2,5 В). Седьмой элемент (буква) в обозначении LD1117ххх указывает на тип корпуса (S - SOT-223, D - S0-8, V - ТО-220), а следующее за ним двузначное число - на номинальное значение выходного напряжения в десятых долях вольта (12 - 1,2 В, 18 - 1,8 В и т. д.). Присоединенное через дефис число в обозначении микросхем REG1117-хх также указывает на напряжение стабилизации. Цоколевка этих микросхем в корпусе SOT-223 показана на рис. 2,а.

Допустимо использование и микросхем стабилизаторов с регулируемым выходным напряжением, например, КР142ЕН12А, LM317T. В этом случае можно получить любое значение выходного напряжения от 1,2 до 5...6 В.
При питании аппаратуры, потребляющей небольшой ток (30. .100 мА), например, малогабаритных УКВ ЧМ радиоприемников, в переходнике можно применить микросхемы КР1157ЕН5А, КР1157ЕН5Б, КР1157ЕН501А, КР1157ЕН501Б, КР1157ЕН502А, КР1157ЕН502Б, КР1158ЕН5А, КР1158ЕН5Б (все с номинальным выходным напряжением 5 В), КР1158ЕНЗА, КР1158ЕНЗБ (3,3 В). Чертеж возможного варианта печатной платы переходника с ис-
пользованием микросхем последней серии показан на рис. 3. Конденсаторы С1 и С2 - малогабаритные оксидные любого типа емкостью 10 мкФ.

Существенно уменьшить габариты переходника можно, применив миниатюрные микросхемы серии LM3480-xx (последние две цифры обозначают выходное напряжение). Они выпускаются в корпусе SOT-23 (см. рис. 2,6). Чертеж печатной платы для этого случая изображен на рис. 4. Конденсаторы С1 и С2 - малогабаритные керамические К10-17 или аналогичные импортные емкостью не менее 0,1 мкФ. Внешний вид переходников, смонтированных на платах, изготовленных в соответствии с рис. 3 и 4, показан на рис. 5.

Следует отметить, что фольга на плате может выполнять функцию тепло-отвода. Поэтому площадь проводника под вывод микросхемы (общий или выход), через который осуществляется отвод тепла, желательно сделать как можно большей.
Собранное устройство помещают в пластмассовую коробку подходящих размеров или в батарейный отсек питаемого аппарата. Для стыковки с зарядным устройством переходник необходимо снабдить соответствующей розеткой (аналогичной той, что установлена в сотовом телефоне). Ее можно разместить на печатной плате со стабилизатором либо закрепить на одной из стенок коробки.
Налаживания переходник не требует, необходимо только проверить его в работе с соединительными проводами, которые будут использоваться для подключения к зарядному устройству и питаемому аппарату. Самовозбуждение устраняют увеличением емкости конденсаторов С1 и С2.

ЛИТЕРАТУРА
1. Бирюков С. Микросхемные стабилизаторы напряжения широкого применения. - Радио, 1999, № 2, с. 69-71.
2. LD1117 Series. Low Drop Fixed and Adjustable Positive Voltage Regulators. - .
3. REG1117, REG1117A. 800mA and 1A Low Dropout (LDO) Positive Regulator 1,8V, 2,5V, 2,85V, 3,3V, 5V and Adjustable. - .
4. LM3480. 100 mA, SOT-23, Quasi Low-Dropout Linear Voltage Regulator. - .

Многие люди, приобретая новую компьютерную технику, выкидывают на помойку свой старый системный блок. Это довольно недальновидно, ведь в нем могут находиться еще работоспособные комплектующие , которые можно использовать для других целей. В частности, речь идет о блоке питания компьютера, из которого можно .

Стоит отметить, что затраты на изготовление своими руками минимальны, что позволяет существенно сэкономить свои денежные средства.

Блок питания компьютера представляет собой преобразователь напряжения, соответственно +5, +12, -12, -5 В. Путем определенных манипуляций, можно из такого БП сделать своими руками вполне рабочее зарядное устройство для своего автомобиля. Вообще, зарядки бывают двух типов:

Зарядные устройства со множеством опций (пуск двигателя, тренировка, подзарядка и т.д.).

Устройство для подзарядки АКБ — подобные зарядки нужны для автомобилей, у которых небольшой километраж между пробегами .

Нас интересует именно второй тип зарядных устройств, потому что большинство транспортных средств эксплуатируются короткими пробегами, т.е. автомобиль завели, проехали определенное расстояние, а затем заглушили. Подобная эксплуатация приводит к тому, что у аккумуляторной батареи автомобиля довольно быстро заканчивается заряд, что особенно характерно для зимнего времени. Поэтому и оказываются востребованными подобные стационарные агрегаты, с помощью которых можно очень оперативно зарядить АКБ, вернув его в рабочее состояние. Сама зарядка осуществляется при помощи тока порядка 5 Ампер, а напряжение на клеммах колеблется от 14 до 14,3 В. Мощность зарядки, которая рассчитывается путем умножения значений напряжения и тока, может быть обеспечена из блока питания компьютера, ведь средняя мощность его составляет порядка 300-350 Вт.

Переделка компьютерного БП в зарядное устройство


Автор предлагает варианты переделки зарядного устройства для сотового телефона в стабилизированный блок питания с регулируемым выходным напряжением или в источник стабильного тока, например, для зарядки аккумуляторов.

Одни из самых многочисленных электронных приборов, которые широко используются в быту, - несомненно, зарядные устройства (ЗУ) для сотовых телефонов. Некоторые из них можно доработать, улучшив параметры или расширив функциональные возможности. Например, превратить ЗУ в стабилизированный блок питания (БП) с регулируемым выходным напряжением или ЗУ со стабильным выходным током.

Это позволит питать от сети различную радиоаппаратуру или заряжать Li-Ion, Ni-Cd, Ni-MH аккумуляторы и батареи.

Значительная часть ЗУ для сотовых телефонов собрана на основе однотранзисторного ав-тогенераторного преобразователя напряжения. Один из вариантов схемы такого ЗУ на примере модели ACH-4E приведён на рис. 1. Там же показано, как превратить его в БП с регулируемым выходным напряжением. Обозначения штатных элементов приведены в соответствии с маркировкой на печатной плате.

Рис. 1. Один из вариантов схемы ЗУ на примере модели ACH-4E

Вновь введённые элементы и доработки выделены цветом.

В простых ЗУ, к которым относится дорабатываемое, зачастую применён однополупериодный выпрямитель сетевого напряжения, хотя на плате, в большинстве случаев, есть место для размещения диодного моста. Поэтому на первом этапе доработки установлены недостающие диоды, а резистор R1 с платы удалён (он установлен на месте диода D4) и припаян непосредственно к одному из штырей вилки XP1. Следует отметить, что встречаются ЗУ, в которых отсутствует и сглаживающий конденсатор С1. Если это так, необходимо установить конденсатор ёмкостью 2,2...4,7 мкФ на номинальное напряжение не менее 400 В. Затем конденсатор С5 заменяют другим с большей ёмкостью. В таком варианте доработки ЗУ показаны на рис. 2.

Рис. 2. Доработанное ЗУ

В оригинальном ЗУ в выходном выпрямителе применён диод 1N4937, который заменён диодом Шотки 1N5818, что позволило увеличить выходное напряжение. После такой доработки сняты зависимости выходного напряжения от тока нагрузки, которые показаны синим цветом на рис. 3. Амплитуда пульсаций выходного напряжения с ростом тока нагрузки увеличивается с 50 до 300 мВ. При токе нагрузки более 300 мА появляются пульсации частотой 100 Гц.

Рис. 3. Зависимости выходного напряжения от тока нагрузки

Зависимости показывают, что стабильность выходного напряжения в ЗУ невысока. Обусловлено это тем, что его стабилизация осуществляется косвенно контролем напряжения на обмотке II, а именно, за счёт выпрямления импульсов на обмотке II и подачи закрывающего напряжения через стабилитрон ZD (напряжение стабилизации 5,6...6,2 В) на базу транзистора Q1.

Для повышения стабильности выходного напряжения и возможности его регулировки на втором этапе доработки введена микросхема DA1 (параллельный стабилизатор напряжения). Управление преобразователем и обеспечение гальванической развязки реализованы с помощью транзисторной оптопары U1. Для подавления импульсных помех с частотой автогенератора дополнительно установлен фильтр L1C6C8. Резистор R9 удалён.

Выходное напряжение устанавливают переменным резистором R12. Когда напряжение на управляющем входе микросхемы DA1 (вывод1) превысит 2,5 В, ток через микросхему и, соответственно, через излучающий диод оптопары U1 резко возрастёт. Фототранзистор оптопары откроется, и на затвор базы транзистора Q1 поступит закрывающее напряжение с конденсатора С4. Это приведёт к тому, что скважность импульсов автогенератора уменьшится (или произойдёт срыв генерации). Выходное напряжение перестанет расти и начнёт плавно уменьшаться вследствие разрядки конденсаторов С5 и С8.

Когда напряжение на управляющем входе микросхемы станет менее 2,5 В ток через неё уменьшится и фототранзистор закроется. Скважность импульсов автогенератора возрастёт (или он начнёт работу), и выходное напряжение станет расти. Интервал выходного напряжения, который можно установить резистором R12, - 3,3...6 В. Напряжения менее 3,3 В с учётом падения на излучающем диоде оптопары оказывается недостаточно для нормальной работы микросхемы. Зависимости выходного напряжения (для разных значений) от тока нагрузки доработанного устройства показаны красным цветом на рис. 3. Амплитуда пульсаций выходного напряжения - 20...40 мВ.

Элементы (кроме переменного резистора) второго этапа доработки размещены на односторонней печатной плате из фольгированного стеклотекстолита толщиной 0,5...1 мм, её чертёж показан на рис. 4. Монтаж - со стороны печатных проводников. Можно при-менить постоянные резисторы МЛТ, С2-23, Р1-4, конденсаторы С6, С7 - керамические, С5 - оксидный импортный, он снят с материнской платы персонального компьютера, С8 - оксидный низкопрофильный импортный. Поскольку выходное напряжение приходится устанавливать нечасто, применён не переменный резистор, а подстроечный PVC6A (POC6AP). Это позволило установить его на задней стенке корпуса ЗУ. Дроссель L1 намотан в один слой проводом ПЭВ-2 0,4 на цилиндрическом ферритовом магнитопроводе диаметром 5 мм и длиной 20 мм (от дросселя ИИП компьютера). Можно применить оптопары серии РС817 и аналогичные. Плату с деталями (рис. 5) вставляют в свободное место ЗУ (частично над конденсатором С1), соединения проводят отрезками изолированного провода. Для подстроечного резистора в задней стенке ЗУ делают отверстие соответствующих размеров, в которое его вклеивают. После проверки устройства резистор R12 снабжают шкалой (рис. 6).

Рис. 4. Печатная плата и элеменеты на ней

Рис. 5. Плата с деталями

Рис. 6. Шкала на ЗУ

Второй вариант доработки ЗУ - введение в него стабилизатора(или ограничителя) тока. Это позволит заряжать Li-Ion или Ni-Cd, Ni-MH аккумуляторы и батареи, содержащие до четырёх аккумуляторов. Схема такой доработки показана на рис. 7. С помощью переключателя можно выбрать режимы работы: блок питания или один из двух режимов "ЗУ" с ограничением тока. Конденсатор 220 мкФ (С5) заменён конденсатором ёмкостью 470 мкФ, но на большее напряжение, поскольку в режимах "ЗУ" без нагрузки выходное напряжение может увеличиться до 6...8 В.

Рис. 7. Схема второго варианта доработки ЗУ

В режиме "БП" устройство работает в штатном режиме. При переходе в один из режимов "ЗУ" выходной ток протекает через резистор R10 (или R11). Когда напряжение на нём достигнет 1 В, часть тока начнёт ответвляться в излучающий диод оптопары U1, что приведёт к открыванию фототранзистора. Это приведёт к уменьшению выходного напряжения и стабилизации (ограничению) выходного тока I вых. Его значение можно определить по приближённым формулам: I вых = 1 /R10 или I вых = 1/R11. Подборкой этих резисторов устанавливают желаемое значение тока. Полевой транзистор VT1 ограничивает ток через излучающий диод оптопары и тем самым защищает его от выхода из строя.

Большинство деталей размещают на односторонней печатной плате (рис. 8 и рис. 9) из фольгированного стеклотекстолита толщиной 0,5...1 мм. Полевой транзистор должен быть с начальным током стока не менее 25 мА. Переключатель - любой малогабаритный движковый на одно или два направления и три положения, например SK23D29G, его размещают на задней стенке ЗУ и снабжают шкалой. Если применить переключатель на большее число положений, можно увеличить число номинальных значений тока и расширить тем самым номенклатуру заряжаемых аккумуляторов.

Рис. 8. Печатн ая плата и элеменеты на ней

Поскольку зарядка осуществляется стабильным током, её следует проводить определённое время, которое зависит от типа и ёмкости заряжаемого аккумулятора или батареи.


Дата публикации: 11.12.2017

Мнения читателей
  • Alius / 22.07.2019 - 07:06
    1.Возможно ли поднять выходное напряжение до 12-15вольт простой доработкой(установкой стабилитрона на 12-15В, или TL431...)? 2.Стабилитрон удалять надо из схемы(рис.1, рис.7) при описанной доработке... ?(на схеме просто это не ясно...) 3. Благодарю, за ответ заранее; и автора!
  • анатолий / 23.12.2017 - 19:22
    очень полезная информация.дано подробное описание проводимой доработки,понятное любому "чайнику".Спасибо.

МОДЕРНИЗАЦИЯ ЗАРЯДНЫХ УСТРОЙСТВ

Дешёвые китайские зарядные устройства для пальчиковых аккумуляторов, имеются у многих. В своё время и я, соблазнившись низкой ценой (около 3 уе), приобрёл такой девайс. Поработав примерно час, зарядка начала плавиться и дыметь. Причиной оказался трансформатор питания размером со спичечный коробок. Естественно дальше эксплуатировать это зарядное устройство оказалось невозможным - но и выбрасывать жалко.

Попробуем открыть и переделать зарядное устройство на более качественное. Внутри мало свободного места, и установка более крупного трансформатора не возможна - и не надо! Будем ставить плату от зарядного устройства к мобильному телефону.

Уверен, что у всех валяются такие неиспользуемые зарядки. Подойдёт зарядное устройство от абсолютно любой модели телефона. Вставляем внутрь корпуса плату ИП, а подходит она в большинство корпусов по размерам отлично,

И подключаем низковольтный питающий выход 5 Вольт, 0.3 Ампера к контактам держателя аккумуляторов через резисторы и диоды, что уже там установлены. Для получения разных токов заряда можно подобрать значение этих резисторов, контролируя ток амперметром.

Ещё одно слабое место - некачественная сетевая вилка на корпусе, заменяется проводом со штекером. В результате имеем компактное, мощное, а главное с гальванической развязкой от сети зарядное устройство. Данная зарядка успешно эксплуатируется на протяжении 5 лет.